Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
B. Y. Chen [Arch. Math. (Basel) 74 (2000), 154-160] proved a geometrical inequality for Lagrangian submanifolds in complex space forms in terms of the Ricci curvature and the squared mean curvature. Recently, this Chen-Ricci inequality was improved in [Int. Electron. J. Geom. 2 (2009), 39-45].
On the other hand, K. Arslan et al. [Int. J. Math. Math. Sci. 29 (2002), 719-726] established a Chen-Ricci inequality for submanifolds, in particular in contact slant submanifolds, in Kenmotsu space forms.
In this article, we improve the latter inequality for special slant submanifolds in Kenmotsu space forms. We also investigate the equality case.
On the other hand, K. Arslan et al. [Int. J. Math. Math. Sci. 29 (2002), 719-726] established a Chen-Ricci inequality for submanifolds, in particular in contact slant submanifolds, in Kenmotsu space forms.
In this article, we improve the latter inequality for special slant submanifolds in Kenmotsu space forms. We also investigate the equality case.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
81-89
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Department of Mathematics, University of Bucharest, Str. Academiei 14, 010014 Bucureşti, Romania
autor
- Department of Mathematics, University of Bucharest, Str. Academiei 14, 010014 Bucureşti, Romania
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap110-1-7