Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We investigate the curvature and topology of Finsler manifolds, mainly the growth of the fundamental group. By choosing a new counting function for the fundamental group that does not rely on the generators, we are able to discuss the topic in a more general case, namely, we do not demand that the manifold is compact or the fundamental group is finitely generated. Among other things, we prove that the fundamental group of a forward complete and noncompact Finsler n-manifold (M,F) with nonnegative Ricci curvature and finite uniformity constant has polynomial growth of order ≤ n-1, and the first Betti number satisfies b₁(M) ≤ n-1. We also obtain some sufficient conditions to ensure that the fundamental group is finite or is trivial. Most of the results are new even for Riemannian manifolds.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
309-320
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- Department of Mathematics, Minjiang University, Fuzhou, Fujiang 350108, China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap107-3-6