Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We consider the existence of positive solutions of the equation
$1/λ(t) (λ(t)φ_p(x'(t)))' + μf(t,x(t),x'(t)) =0$,
where $φ_p(s) = |s|^{p-2}s$, p > 1, subject to some singular Sturm-Liouville boundary conditions. Using the Krasnosel'skiĭ fixed point theorem for operators on cones, we prove the existence of positive solutions under some structure conditions.
$1/λ(t) (λ(t)φ_p(x'(t)))' + μf(t,x(t),x'(t)) =0$,
where $φ_p(s) = |s|^{p-2}s$, p > 1, subject to some singular Sturm-Liouville boundary conditions. Using the Krasnosel'skiĭ fixed point theorem for operators on cones, we prove the existence of positive solutions under some structure conditions.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
125-144
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Department of Mathematics, Jilin University, Changchun 130012, China
autor
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
autor
- School of Mathematical Sciences, South China Normal University, Guangzhou 510631, Guangdong, China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap105-2-2