Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Our main purpose is to establish the existence of a positive solution of the system
⎧$-∆_{p(x)}u = F(x,u,v)$, x ∈ Ω,
⎨$-∆_{q(x)}v = H(x,u,v)$, x ∈ Ω,
⎩u = v = 0, x ∈ ∂Ω,
where $Ω ⊂ ℝ^{N}$ is a bounded domain with C² boundary, $F(x,u,v) = λ^{p(x)}[g(x)a(u) + f(v)]$, $H(x,u,v) = λ^{q(x})[g(x)b(v) + h(u)]$, λ > 0 is a parameter, p(x),q(x) are functions which satisfy some conditions, and $-∆_{p(x)}u = -div(|∇u|^{p(x)-2}∇u)$ is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.
⎧$-∆_{p(x)}u = F(x,u,v)$, x ∈ Ω,
⎨$-∆_{q(x)}v = H(x,u,v)$, x ∈ Ω,
⎩u = v = 0, x ∈ ∂Ω,
where $Ω ⊂ ℝ^{N}$ is a bounded domain with C² boundary, $F(x,u,v) = λ^{p(x)}[g(x)a(u) + f(v)]$, $H(x,u,v) = λ^{q(x})[g(x)b(v) + h(u)]$, λ > 0 is a parameter, p(x),q(x) are functions which satisfy some conditions, and $-∆_{p(x)}u = -div(|∇u|^{p(x)-2}∇u)$ is called the p(x)-Laplacian. We give existence results and consider the asymptotic behavior of solutions near the boundary. We do not assume any symmetry conditions on the system.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
293-308
Opis fizyczny
Daty
wydano
2012
Twórcy
autor
- Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
- School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223001, China
autor
- Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
- College of Zhongbei, Nanjing Normal University, Nanjing, Jiangsu 210046, China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap104-3-6