Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
For nonlinear difference equations, it is difficult to obtain analytic solutions, especially when all the eigenvalues of the equation are of absolute value 1. We consider a second order nonlinear difference equation which can be transformed into the following simultaneous system of nonlinear difference equations:
⎧ x(t+1) = X(x(t),y(t))
⎨
⎩ y(t+1) = Y(x(t), y(t))
where $X(x,y) = λ₁x + μy + ∑_{i+j≥2} c_{ij}x^{i}y^{j}$, $Y(x,y) = λ₂y + ∑_{i+j≥2} d_{ij}x^{i}y^{j}$ satisfy some conditions. For these equations, we have obtained analytic solutions in the cases "|λ₁| ≠ 1 or |λ₂| ≠ 1" or "μ = 0" in earlier studies. In the present paper, we will prove the existence of an analytic solution for the case λ₁ = λ₂ = 1 and μ = 1.
⎧ x(t+1) = X(x(t),y(t))
⎨
⎩ y(t+1) = Y(x(t), y(t))
where $X(x,y) = λ₁x + μy + ∑_{i+j≥2} c_{ij}x^{i}y^{j}$, $Y(x,y) = λ₂y + ∑_{i+j≥2} d_{ij}x^{i}y^{j}$ satisfy some conditions. For these equations, we have obtained analytic solutions in the cases "|λ₁| ≠ 1 or |λ₂| ≠ 1" or "μ = 0" in earlier studies. In the present paper, we will prove the existence of an analytic solution for the case λ₁ = λ₂ = 1 and μ = 1.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
143-159
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Department of Mathematics, College of Liberal Arts, J. F. Oberlin University, 3758 Tokiwa-cho, Machida-City, Tokyo, 194-0294, Japan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-2-4