Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Our main purpose is to establish the existence of weak solutions of second order quasilinear elliptic systems
⎧ $-Δ_pu + |u|^{p-2}u = f_{1λ₁}(x) |u|^{q-2}u + 2α/(α+β) g_μ|u|^{α-2} u|v|^β$, x ∈ Ω,
⎨ $-Δ_pv + |v|^{p-2}v = f_{2λ₂}(x) |v|^{q-2}v + 2β/(α+β) g_μ|u|^α|v|^{β-2}v$, x ∈ Ω,
⎩ u = v = 0, x∈ ∂Ω,
where 1 < q < p < N and $Ω ⊂ ℝ^N$ is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and $f_{iλ_i}(x) = λ_if_{i+}(x) + f_{i-}(x)$ (i = 1,2) are sign-changing functions, where $f_{i±}(x) = max{±f_i(x),0}$, $g_μ(x) = a(x) + μb(x)$, and $Δ_p u = div(|∇u|^{p-2}∇u)$ denotes the p-Laplace operator. We use variational methods.
⎧ $-Δ_pu + |u|^{p-2}u = f_{1λ₁}(x) |u|^{q-2}u + 2α/(α+β) g_μ|u|^{α-2} u|v|^β$, x ∈ Ω,
⎨ $-Δ_pv + |v|^{p-2}v = f_{2λ₂}(x) |v|^{q-2}v + 2β/(α+β) g_μ|u|^α|v|^{β-2}v$, x ∈ Ω,
⎩ u = v = 0, x∈ ∂Ω,
where 1 < q < p < N and $Ω ⊂ ℝ^N$ is an open bounded smooth domain. Here λ₁, λ₂, μ ≥ 0 and $f_{iλ_i}(x) = λ_if_{i+}(x) + f_{i-}(x)$ (i = 1,2) are sign-changing functions, where $f_{i±}(x) = max{±f_i(x),0}$, $g_μ(x) = a(x) + μb(x)$, and $Δ_p u = div(|∇u|^{p-2}∇u)$ denotes the p-Laplace operator. We use variational methods.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
51-71
Opis fizyczny
Daty
wydano
2011
Twórcy
autor
- Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
- School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223001, China
autor
- Institute of Mathematics, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu 210046, China
- College of Zhongbei, Nanjing Normal University, Nanjing, Jiangsu 210046, China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-ap102-1-5