Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
There is a Shimura lifting which sends cusp forms of a half-integral weight to holomorphic modular forms of an even integral weight. Niwa and Cipra studied this lifting using the theta series attached to an indefinite quadratic form; later, Borcherds and Bruinier extended this lifting to weakly holomorphic modular forms and harmonic weak Maass forms of weight 1/2, respectively. We apply Niwa's theta kernel to weak Maass forms by using a regularized integral. We show that the lifted function satisfies modular transformation properties and is an eigenfunction of the Laplace operator. In particular, this lifting preserves the property of being harmonic. Furthermore, we determine the location of singularities of the lifted function and describe its singularity type.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
1-18
Opis fizyczny
Daty
wydano
2016
Twórcy
autor
- Department of Mathematics and PMI, Pohang University of Science and Technology, Pohang, 790-784, Republic of Korea
autor
- Department of Mathematics Education, Sungkyunkwan University, 25-2, Sungkyunkwan-ro, Jongno-gu, Seoul, 03063, Republic of Korea
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa7916-12-2015