Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Two infinite sequences A and B of non-negative integers are called infinite additive complements if their sum contains all sufficiently large integers. In 1994, Sárközy and Szemerédi conjectured that there exist infinite additive complements A and B with lim sup A(x)B(x)/x ≤ 1 and A(x)B(x)-x = O(min{A(x),B(x)}), where A(x) and B(x) are the counting functions of A and B, respectively. We prove that, for infinite additive complements A and B, if lim sup A(x)B(x)/x ≤ 1, then, for any given M > 1, we have
$A(x)B(x) - x ≥ (min{A(x), B(x)})^M$
for all sufficiently large integers x. This disproves the above Sárközy-Szemerédi conjecture. We also pose several problems for further research.
$A(x)B(x) - x ≥ (min{A(x), B(x)})^M$
for all sufficiently large integers x. This disproves the above Sárközy-Szemerédi conjecture. We also pose several problems for further research.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
47-58
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- School of Mathematical Sciences, and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, P.R. China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa169-1-3