Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We prove some connections between the growth of a function and its Mellin transform and apply these to study an explicit example in the theory of Beurling primes. The example has its generalised Chebyshev function given by [x]-1, and associated zeta function ζ₀(s) given via
$- (ζ'₀(s))/(ζ₀(s)) = ζ(s) - 1$,
where ζ is Riemann's zeta function. We study the behaviour of the corresponding Beurling integer counting function N(x), producing O- and Ω- results for the 'error' term. These are strongly influenced by the size of ζ(s) near the line Re s=1.
$- (ζ'₀(s))/(ζ₀(s)) = ζ(s) - 1$,
where ζ is Riemann's zeta function. We study the behaviour of the corresponding Beurling integer counting function N(x), producing O- and Ω- results for the 'error' term. These are strongly influenced by the size of ζ(s) near the line Re s=1.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
383-395
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Department of Mathematics, University of Babylon, Babylon, Iraq
autor
- Department of Mathematics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AX, UK
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-4-4