Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Let d ≥ 2 be an integer. In 2010, the second, third, and fourth authors gave necessary and sufficient conditions for the infinite products
$∏_{k=1 \atop U_{d^k}≠-a_i}^{∞} (1 + (a_i)/(U_{d^k}))$ (i=1,...,m) or $∏_{k=1 \atop V_{d^k}≠-a_i}^{∞} (1 + (a_i)(V_{d^k})$ (i=1,...,m)
to be algebraically dependent, where $a_i$ are non-zero integers and $U_n$ and $V_n$ are generalized Fibonacci numbers and Lucas numbers, respectively. The purpose of this paper is to relax the condition on the non-zero integers $a_1,...,a_m$ to non-zero real algebraic numbers, which gives new cases where the infinite products above are algebraically dependent.
$∏_{k=1 \atop U_{d^k}≠-a_i}^{∞} (1 + (a_i)/(U_{d^k}))$ (i=1,...,m) or $∏_{k=1 \atop V_{d^k}≠-a_i}^{∞} (1 + (a_i)(V_{d^k})$ (i=1,...,m)
to be algebraically dependent, where $a_i$ are non-zero integers and $U_n$ and $V_n$ are generalized Fibonacci numbers and Lucas numbers, respectively. The purpose of this paper is to relax the condition on the non-zero integers $a_1,...,a_m$ to non-zero real algebraic numbers, which gives new cases where the infinite products above are algebraically dependent.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
161-186
Opis fizyczny
Daty
wydano
2015
Twórcy
autor
- Institute of Mathematics, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 350-0006, Japan
autor
- Department of Mathematical Information Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
autor
- Graduate School of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan
autor
- Department of Mathematics, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa168-2-5