Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
We introduce the real valued real analytic function κ(t) implicitly defined by
$e^{2πiκ(t)} = -e^{-2iϑ(t)} (ζ'(1/2-it))/(ζ'(1/2+it))$ (κ(0) = -1/2).
By studying the equation κ(t) = n (without making any unproved hypotheses), we show that (and how) this function is closely related to the (exact) position of the zeros of Riemann's ζ(s) and ζ'(s). Assuming the Riemann hypothesis and the simplicity of the zeros of ζ(s), it follows that the ordinate of the zero 1/2 + iγₙ of ζ(s) is the unique solution to the equation κ(t) = n.
$e^{2πiκ(t)} = -e^{-2iϑ(t)} (ζ'(1/2-it))/(ζ'(1/2+it))$ (κ(0) = -1/2).
By studying the equation κ(t) = n (without making any unproved hypotheses), we show that (and how) this function is closely related to the (exact) position of the zeros of Riemann's ζ(s) and ζ'(s). Assuming the Riemann hypothesis and the simplicity of the zeros of ζ(s), it follows that the ordinate of the zero 1/2 + iγₙ of ζ(s) is the unique solution to the equation κ(t) = n.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
215-245
Opis fizyczny
Daty
wydano
2014
Twórcy
autor
- Facultad de Matemáticas, Universidad de Sevilla, Apdo. 1160, 41080 Sevilla, Spain
autor
- Langebuorren 49, 9074 CH Hallum, The Netherlands, (formerly at the CWI, Amsterdam)
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa163-3-3