Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 159 | 1 | 89-100
Tytuł artykułu

On the quartic character of quadratic units

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, $d=2^r d₀$ and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine $(b+√(b²+4^α)/2)^{(p-1)/4)} (mod p)$ for p = x²+(b²+4^{α})y² (b,x,y ∈ ℤ, 2∤b), and $(2a+√{4a²+1})^{(p-1)/4} (mod p)$ for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for $U_{(p-1)/4} (mod p)$ and the criterion for $p | U_{(p-1)/8}$ (if p ≡ 1 (mod 8)), where {Uₙ} is the Lucas sequence given by U₀ = 0, U₁ = 1 and $U_{n+1} = bUₙ+U_{n-1} (n≥1)$, and b ≢ 2 (mod 4). Hence we partially solve some conjectures that we posed in 2009.
Słowa kluczowe
Czasopismo
Rocznik
Tom
159
Numer
1
Strony
89-100
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
  • School of Mathematical Sciences, Huaiyin Normal University, Huaian, Jiangsu 223001, P.R. China
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-1-5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.