Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let K be a number field, X be a smooth projective curve over it and D be a reduced divisor on X. Let (E,∇) be a vector bundle with connection having meromorphic singularities on D. Let $p_1,...,p_s ∈ X(K)$ and $X^o:=X̅∖{D,p_1,..., p_s}$ (the $p_j$'s may be in the support of D). Using tools from Nevanlinna theory and formal geometry, we give the definition of E-section of arithmetic type of the vector bundle E with respect to the points $p_j$; this is the natural generalization of the notion of E-function defined in Siegel-Shidlovskiĭ theory. We prove that the value of an E-section of arithmetic type at an algebraic point different from the $p_j$'s has maximal transcendence degree. The Siegel-Shidlovskiĭ theorem is a special case of our theorem proved. We give two applications of the theorem.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
99-128
Opis fizyczny
Daty
wydano
2013
Twórcy
autor
- Université de Strasbourg, IRMA, 7 rue René Descartes, 67084 Strasbourg, France
Bibliografia
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-2-1