Warianty tytułu
Języki publikacji
Abstrakty
Let (T,F,μ) be a separable probability measure space with a nonatomic measure μ. A subset K ⊂ L(T,Rⁿ) is said to be decomposable if for every A ∈ F and f ∈ K, g ∈ K one has $fχ_A + gχ_{T\A} ∈ K$. Using the property of decomposability as a substitute for convexity a relaxation theorem for fixed point sets of set-valued function is given.
Rocznik
Tom
Numer
Strony
91-97
Opis fizyczny
Daty
wydano
1996
Twórcy
autor
- Institute of Mathematics, Technical University, Podgórna 50, 65-246 Zielona Góra, Poland
Bibliografia
- [1] N. Dunford, J.T. Schwartz, Linear Operators I, Int. Publ. INC., New York 1967.
- [2] F. Hiai and H. Umegaki, Integrals, conditional expections and martingals of multifunctions, J. Multivariate Anal., 7 (1977), 149-182.
- [3] A. Kisielewicz, Selection theorem for set-valued function with decomposable values, Comm. Math., 34 (1994), 123-135.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-div16i1n5bwm