Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Repetitive processes constitute a distinct class of 2D systems, i.e., systems characterized by information propagation in two independent directions, which are interesting in both theory and applications. They cannot be controlled by a direct extension of the existing techniques from either standard (termed 1D here) or 2D systems theories. Here we give new results on the design of physically based control laws. These results are for a sub-class of discrete linear repetitive processes with switched dynamics in both independent directions of information propagation.
Słowa kluczowe
Wydawca
Rocznik
Tom
Numer
Strony
441-462
Opis fizyczny
Daty
wydano
2006
otrzymano
2005-10-18
poprawiono
2006-08-26
Twórcy
autor
- Faculty of Electrical Engineering, Computer Science and Telecommunications, University of Zielona Gora, Podgorna 50, 65-246 Zielona Gora, Poland
autor
- Faculty of Electrical Engineering, Computer Science and Telecommunications, University of Zielona Gora, Podgorna 50, 65-246 Zielona Gora, Poland
autor
- School of Electronics and Computer Science, University of Southampton, Southampton SO 17 1BJ, United Kingdom
autor
- Faculty of Electrical, Information and Media Engineering University of Wuppertal, Rainer-Gruenter-Strasse 21, D-42119 Wuppertal, Germany
Bibliografia
- Amann N., Owens D.H. and Rogers E. (1998): Predictive optimal iterative learnig control. - Int. J. Contr., Vol. 69, No. 2, pp. 203-226.
- Bachelier O., Bernussou J., de Oliveira M.C. and Geromel J.C.(1999): Parameter dependent Lyapunov control design: Numerical evaluation. - Proc. 38-th Conf. Decision and Control, Phoenix, USA, pp. 293-297.
- Benton S.E. (2000): Analysis and Control of Linear Repetitive Processes. - Ph.D. thesis, University of Southampton, UK.
- Bochniak J., Gałkowski K., Rogers E., Mehdi D., Bachelier O. and Kummert A. (2006): Stabilization of discrete linear repetitive processes with switched dynamics. - Multidim. Syst. Signal Process., Vol. 17, No. 2-3, pp. 271-293.
- Boyd S., Feron E., El Ghaoui L. and Balakrishnan V. (1994): Linear Matrix Inequalities in System and Control Theory. - Philadelphia: SIAM.
- D'Andrea R. and Dullerud G.E. (2003): Distributed control design for spatially interconnected systems. - IEEE Trans. Automat. Contr., Vol. 48, No. 9, pp. 1478-1495.
- Du C. and Xie L. (1999): Stability analysis and stabilisation of uncertain two-dimensional discrete systems: An LMI approach. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 46, No. 11, pp. 1371-1374.
- Edwards J.B. (1974): Stability problems in the control of multipass processes. - Proc. IEE, Vol. 121, No. 11, pp. 1425-1432.
- Gałkowski K., Rogers E., Xu S., Lam J. and Owens D.H. (2002): LMIs-A fundamental tool in analysis and controller design for discrete linear repetitive processes. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 49, No. 6, pp. 768-778.
- Longman R. (2003): On the interaction between theory, experiments and simulation in developing practical learning control algorithms. - Int. J. Appl. Math. Comput. Sci., Vol. 13, No. 1, pp. 101-112.
- Ratcliffe J.D., Hatonen J.J., Lewin P.L., Rogers E., Harte T.J. and Owens D.H. (2005): P-type iterative learning control for systems that contain resonance. - Int. J. Adapt. Contr. Sig. Process., Vol. 19, No. 10, pp. 769-796.
- Roberts P.D. (2002): Two-dimensional analysis of an iterative nonlinear optimal control algorithm. - IEEE Trans. Circ. Syst. I: Fundam. Theory Applic., Vol. 49, No. 6, pp. 872-878.
- Rogers E. and Owens D.H. (1992): Stability Analysis for Linear Repetitive Processes. -Lect. Notes Contr. Inf. Sci., Vol. 175, Berlin, Germany: Springer-Verlag.
- Smyth K.J. (1992): Computer Aided Analysis for Linear Repetitive Processes. - Ph.D. thesis, University of Strathclyde, Glasgow, UK.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv16i4p441bwm