Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2003 | 13 | 2 | 199-204
Tytuł artykułu

Inversion of square matrices in processors with limited calculation abillities

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An iterative inversion algorithm for a class of square matrices is derived and tested. The inverted matrix can be defined over both real and complex fields. This algorithm is based only on the operations of addition and multiplication. The numerics of the algorithm can cope with a short number representation and therefore can be very useful in the case of processors with limited possibilities, like different neuro-computers and accelerator cards. The quality of inversion can be traced and tested. The algorithm can be used in the case of singular matrices, and then it automatically produces a result that contains the inverse of this part of the processed matrix which can be inverted. An example of the inversion of a six-order square matrix is presented and discussed.
Rocznik
Tom
13
Numer
2
Strony
199-204
Opis fizyczny
Daty
wydano
2003
otrzymano
2002-09-23
poprawiono
2003-03-31
Twórcy
  • Institute of Automatic Control and Robotics, Warsaw University of Technology, ul. Narbutta 87, 02-525 Warsaw, Poland
Bibliografia
  • Beernaert L. and Roose D. (1991): Parallel Gaussian elimination, iPSC2 hypercube versus a transputer network, In: Numerical Linear Algebra (G. Golub, Ed.).- NATO ASI Series, Vol. 70, Berlin: Springer.
  • Bodewig E. (1965): Matrix Calculus. - Amsterdam: North-Holland.
  • Bjorck A. (1991): Error analysis of least squares algorithms, In: Numerical Linear Algebra (G. Golub, Ed.). - NATO ASI Series, Vol. 70, Berlin: Springer.
  • Collar A.R. and Simpson A. (1987): Matrices and Engineering Dynamics.- New York: Wiley.
  • Golub G., Greenbaum A. and Luskin M. (1992): Recent Advances in Iterative Methods.- New York: Springer.
  • Higham J.H. (1996): Accuracy and Stability of Numerical Algorithms. - Philadelphia: SIAM.
  • Kiełbasiński A. and Szczepik H. (1992): Numerical Algebra. - Warsaw: WNT, (in Polish).
  • Masters T. (1993): Practical Neural Network Recipes in C++. - London: Academic Press.
  • Synapse 3 (1977): PC Siemens Card- Technical Documentation. -Dresden: Siemens.
  • William H., Flannery B., Teukolsky S. and Vetterling W. (1992): Numerical Recipes in C. - New York: Cambrige University Press.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv13i2p199bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.