Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 11 | 6 | 1277-1283
Tytuł artykułu

Exact observability of diagonal systems with a one-dimensional output operator

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper equivalent conditions for exact observability of diagonal systems with a one-dimensional output operator are given. One of these equivalent conditions is the conjecture of Russell and Weiss (1994). The other conditions are given in terms of the eigenvalues and the Fourier coefficients of the system data.
Rocznik
Tom
11
Numer
6
Strony
1277-1283
Opis fizyczny
Daty
wydano
2001
Twórcy
autor
  • Fachbereich Mathematik, University of Dortmund, D-44221 Dortmund, Germany
autor
  • Faculty of Mathematical Sciences, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Bibliografia
  • Avdonin S.A. and Ivanov S.A. (1995): Families of Exponentials: The Method of Moments in Controllability Problems for Distributed Parameter Systems. — Cambridge: Cambridge University Press.
  • Curtain R.F. and Zwart H. (1995): An Introduction to Infinite-Dimensional Linear Systems Theory. — New York: Springer.
  • Garnett J.B. (1981): Bounded Analytic Functions. — New York: Academic Press.
  • Grabowski P. (1990): On the spectral-Lyapunov approach to parametric optimization of distributed parameter systems. — IMA J. Math. Contr. Inf., Vol.7, No.4, pp.317–338.
  • Grabowski P. and Callier F.M. (1996): Admissible observation operators, semigroup criteria of admissibility. — Int. Eqns. Oper. Theory, Vol.25, No.2, pp.182–198.
  • Jacob B. and Zwart H. (1999): Equivalent conditions for stabilizability of infinitedimensional systems with admissible control operators. — SIAM J. Contr. Optim., Vol.37, No.5, pp.1419–1455.
  • Jacob B. and Zwart H. (2000a): Disproof of two conjectures of George Weiss. — Memorandum 1546, Faculty of Mathematical Sciences, University of Twente.
  • Jacob B. and Zwart H. (2000b): Exact controllability of C0 -groups with one-dimensional input operators, In: Advances in Mathematical Systems Theory. A volume in Honor of Diederich Hinrichsen (F. Colonius, U. Helmke, D. Prätzel-Wolters and F. Wirth, Eds.). — Boston: Birkhäuser.
  • Jacob B. and Zwart H. (2001): Exact observability of diagonal systems with a finitedimensional output operator. — Syst. Contr. Lett., Vol.43, No.2, pp.101–109.
  • Komornik V. (1994): Exact controllability and stabilization. The multiplier method. Chichester: Wiley; Paris: Masson.
  • Nikol’skiĭ N.K. and Pavlov B.S. (1970): Bases of eigenvectors of completely nonunitary contractions and the characteristic function. — Math. USSR-Izvestija, Vol.4, No.1, pp.91–134.
  • Rebarber R. and Weiss G. (2000): Necessary conditions for exact controllability with a finite-dimensional input space. — Syst. Contr. Lett., Vol.40, No.3, pp.217–227.
  • Russell D.L. and Weiss G. (1994): A general necessary condition for exact observability. — SIAM J. Contr. Optim., Vol.32, No.1, pp.1–23.
  • Weiss G. (1988): Admissibility of input elements for diagonal semigroups on l 2 . — Syst. Contr. Lett., Vol.10, No.1, pp.79–82.
  • Zwart H. (1996): A note on applications of interpolations theory to control problems of infinite-dimensional systems. — Appl. Math. Comp. Sci., Vol.6, No.1, pp.5–14.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-amcv11i6p1277bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.