Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 61, nr 2 | 210--215
Tytuł artykułu

The influence of chemical composition on structure and mechanical properties of austenitic Cr-Ni steels

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the paper is to investigated the influence of the chemical composition on the structure and mechanical properties of austenitic Cr-Ni steels. Special attention was put on the effect of solution heat treatment on mechanical properties of examined steels. Design/methodology/approach: The examinations of static tensile tests were conducted on ZWICK 100N5A. Hardness measurements were made by Vickers method. The X-ray analyzes were realized with the use of Dron 2.0 diffractometer equipped with the lamp of the cobalt anode. The metallographic observations were carried out on LEICA MEF 4A light microscope. Findings: Results shown that after solution heat treatment the values of strength properties (UTS, YS0.2) and hardness (HV) of both investigated steels decrease and their elongation (EL) increases. The X5CrNi18-8 steel in delivery state shown austenitic microstructure with twins and numerous non-metallic inclusions, while in steel X10CrNi18-8 revealed a austenitic microstructure with numerous slip bands in areas with deformation martensite α’. The examined steels after solution heat treatment followed by water-cooling has the structure of austenite. Research limitations/implications: To investigate in more detail the influence of chemical composition on structure and mechanical properties the examinations of substructure by TEM should be conducted. Originality/value: The relationship between the solution heat treatment, structure and mechanical properties of investigated steels was specified.
Wydawca

Rocznik
Strony
210--215
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland, agnieszka.kurc@polsl.pl
autor
  • Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, 44-100 Gliwice, Poland
Bibliografia
  • [1] A.F. Padilha, P.R. Rios, Decomposition of austenite in austenitic stainless steel, The Iron and Steel Institute of Japan 42/4 (2002) 325-337.
  • [2] E. Perdahcioglu, H. Geijselaers, Influence of plastic strain on deformation-induced martensitic transformations, Scripta Materialia 58 (2008) 947-950.
  • [3] D. Jandova, J. Rehor, Z. Novy, Deformation processes in austenitic stainless steel, Journal of Achievements in Mechanical and Materials Engineering 11 (2002), 254-258.
  • [4] S.K. Ghosh, P. Malicki, P.P. Chattopadhyay, Effect of cold deformation on phase evolution and mechanical properties in an austenitic stainless steel for structural and safety applications, Journal of Iron and Steel Research International 19/4 (2012) 63-68.
  • [5] W.S. Lee, C.F. Lin, Impact properties and microstructure evolution of 304L stainless steel, Materials Science and Engineering 308A (2001) 124-135.
  • [6] K. Pałka, A. Weroński, K. Zalewski, Mechanical properties and corrosion resistance of burnished X5CrNi18-9 stainless steel, Journal of Achievements in Materials and Manufacturing Engineering 16 (2006) 57-62.
  • [7] K.H. Lo, C.H. Shek, J.K.L. Lai, Recent development in stainless steels, Materials Science and Engineering 65R (2009) 39-104.
  • [8] P. Hedström, U. Lienert, J. Almer, Stepwise transformation behavior of the strain-induced martensitic transformation in a metastable stainless steel, Scripta Materialia 56 (2007) 213-216.
  • [9] J.K. Kim, Y.H. Kim, K.Y. Kim, Influence of Cr, C and Ni on intergranular segregation and precipitation in Ti-stabilized stainless steels, Scripta Materialia 63 (2010) 449-451.
  • [10] A. Baron, Influence of electrolytic polishing on electrochemical behavior of austenitic steel, Journal of Achievements in Materials and Manufacturing Engineering 18 (2006) 55-58.
  • [11] J. Talonen, P. Nenonen, G. Pape, H. Hänninen, Effect of strain rate on the strain-induced γ→α’- martensite transformation and mechanical properties of austenitic stainless steels, Metallurgical and Materials Transactions 36A (2005) 421-432.
  • [12] M. Kciuk, A. Kurc-Lisiecka, The influence of heat treatment on structure, mechanical properties and corrosion resistance of steel X10CrNi18-8, Archives of Materials Science and Engineering 55/2 (2012) 62-69.
  • [13] R. Reed, The spontaneous martensitic transformations in 18%Cr, 8%Ni steels, Acta Metallurgica 10 (1962) 865-877.
  • [14] P. Lacombe, B. Baroux, G. Beranger, Stainless Steels, Published by Les Editions De Physique Les Ulis, 1993.
  • [15] H. Fujita, S. Ueda, Stacking faults F.C.C. (γ)→H.C.P. (ε) Transformation in 18/8-type stainless steel, Acta Metallurgica 20 (1972) 759-767.
  • [16] W. Ozgowicz, A. Kurc, The effect of the cold rolling on the structure and mechanical properties in austenitic stainless steels type 18-8, Archives of Materials Science and Engineering 38/1 (2009) 26-33.
  • [17] International Standard EN ISO 6892-1:2009, Metallic Materials - Tensile Testing - Part 1, Method of test at room temperature.
  • [18] International Standard EN ISO 6507-1:2007, Metallic materials - Vickers hardness test - Part 1, Test method.
  • [19] ASTM E407 - Standard Practice for Microetching Metals and Alloys.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ffd4dc04-d0fb-4485-9a96-f544c45b82e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.