Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 4 | 223--228
Tytuł artykułu

The Use of Spatial Normalized Difference Vegetation Index for Determination of Humus Content in the Soils of Southern Ukraine

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Spatial normalized difference vegetation index finds various applications in crop monitoring and prediction. Although this index is mainly aimed to represent the state of vegetation cover, it is suggested that it could be utilized for other remote monitoring purposes, for example, soil humus content monitoring. The study was carried out in 2022–2023 fallow-field period in Kherson oblast, the South of Ukraine, to establish the relationship between the values of bare-soil normalized difference vegetation index and content of humus in the soils of the region. Statistical modeling was performed using the best subsets regression analysis in BioStat v.7 and artificial neural network with back propagation of error algorithm in Tiberius XL. The best performance was recorded for the combined model of cubic regression and artificial neural network, with moderate fitting quality (coefficient of determination is 0.29), and good prediction accuracy (mean average percentage error is 13.22%). The results approve the suggestion of possibility of spatial vegetation index use in soil state monitoring, especially, if further scientific work enhances the fitting quality of the model.
Wydawca

Rocznik
Strony
223--228
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
  • Institute of Climate-Smart Agriculture of NAAS, Mikhail Omelyanovich-Pavlenko, 9, 01010, Kyiv, Ukraine, pavel.likhovid@gmail.com
Bibliografia
  • 1. Abdulhussein, A., Mihalache, M. 2021. Use of remote sensing techniques and geographic information systems to identify degraded land in Dhi Qar region from Irak. Scientific Papers. Series A. Agronomy, LXIV(2), 13–21.
  • 2. Bastiaanssen, W., Molden, D., Makin, I. 2000. Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural Water Management, 46(2), 137–155.
  • 3. Ben-Dor, E. 2002. Quantitative remote sensing of soil properties. Advances in Agronomy, 75, 173–243.
  • 4. Blasco, B.C., Moreno, J.J.M., Pol, A.P., Abad, A.S. 2013. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25(4), 500–506.
  • 5. Bouman, B. 1995. Crop modelling and remote sensing for yield prediction. NJAS wageningen journal of life sciences, 43(2), 143–161.
  • 6. Brierley, P.D. 1998. Some practical applications of neural networks in the electricity industry. Cranfield University (United Kingdom).
  • 7. Bychkov, V.V., Ostapov, V.I., Zhuravlev, A.I., Kotliar, N.M., Lirnyk, V.A., Lomonosov, P.I., Pisarenko, V.A., Funtov, A.P. 1987. Scientifically based system of agriculture of Kherson oblast. Kherson, 448.
  • 8. Death, R. 2008. Encyclopedia of Ecology. Elsevier, Amsterdam, The Netherlands.
  • 9. Evans, J.D. 1996. Straightforward statistics for the behavioral sciences. Thomson Brooks/Cole Publishing Co.
  • 10. Heil, K., Schmidhalter, U. 2021. An evaluation of different NIR-spectral pre-treatments to derive the soil parameters C and N of a humus-clay-rich soil. Sensors, 21(4), 1423.
  • 11. Herbei, M.V., Bertici, R., Sala, F. 2022. The use of remote sensing images in order to characterize the soil agrochemical indexes in relation to the agricultural crops. Agriculture & Forestry/Poljoprivreda i Sumarstvo, 68(2), 23–33.
  • 12. Kumar, P., Pandey, P.C., Singh, B.K., Katiyar, S., Mandal, V.P., Rani, M., Tomar, V., Patairiya, S. 2016. Estimation of accumulated soil organic carbon stock in tropical forest using geospatial strategy. The Egyptian Journal of Remote Sensing and Space Science, 19(1), 109–123.
  • 13. Larkin, M.A., Gubarev, D.I., Medvedev, I.F. 2020. Using the results of soil-agrochemical survey and remote sensing data in the formation of working areas in the field. In: Scientific Dialogue in Language Environment, 66–70.
  • 14. Lavrenko, S., Lykhovyd, P., Lavrenko, N., Ushkarenko, V., Maksymov, M. 2022. Beans (Phaseolus vulgaris L.) yields forecast using normalized difference vegetation index. International Journal of Agricultural Technology, 18(3), 1033–1044.
  • 15. Lykhovyd, P. 2021a. Forecasting oil crops yields on the regional scale using normalized difference vegetation index. Journal of Ecological Engineering, 22(3), 53–57.
  • 16. Lykhovyd, P. 2022. Theoretical Bases of Crop Production on the Reclaimed Lands in the Conditions of Climate Change. RS Global Sp. z O.O, Poland, Warsaw, 259.
  • 17. Lykhovyd, P.V. 2021b. Study of climate impact on vegetation cover in Kherson oblast (Ukraine) using normalized difference and enhanced vegetation indices. Journal of Ecological Engineering, 22(6), 126–135.
  • 18. Lykhovyd, P., Biliaieva, I., Boitseniuk, K. 2020a. Remote sensing applications in precision agriculture. In: Problems and Innovations in Science. Abstracts of the 1st International scientific and practical conference, 9–12.
  • 19. Lykhovyd, P., Lavrenko, S., Lavrenko, N. 2020b. Forecasting grain yields of winter crops in Kherson oblast using satellite-based vegetation indices. Bioscience Research, 17(3), 1912–1920.
  • 20. Lykhovyd, P.V., Lavrenko, S., Lavrenko, N., Dementiieva, O. 2019. Agro-environmental evaluation of irrigation water from different sources, together with drainage and escape water of rice irrigation systems, according to its impact on maize. Journal of Ecological Engineering, 20(2), 1–7.
  • 21. Maselli, F., Romanelli, S., Bottai, L., Maracchi, G. 2000. Processing of GAC NDVI data for yield forecasting in the Sahelian region. International Journal of Remote Sensing, 21(18), 3509–3523.
  • 22. McBratney, A., Whelan, B., Ancev, T., Bouma, J. 2005. Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.
  • 23. Rouse, Jr J., Haas, R., Deering, D., Schell, J., Harlan, J. 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (No. E75-10354).
  • 24. Tripathy, R., Chaudhari, K., Mukherjee, J., Ray, S., Patel, N., Panigrahy, S., Parihar, J. 2013. Forecasting wheat yield in Punjab state of India by combining crop simulation model WOFOST and remotely sensed inputs. Remote Sensing Letters, 4(1), 19–28.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ff93e65d-f5f4-4ae2-8504-5166d5c88eef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.