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INTRODUCTION

Remote sensing is an integrative union of 
modern science and technology, applied for get-
ting information about dislocation, dimensions, 
and various properties of the Earth-based objects 
of natural and artificial origin without direct mea-
surements and contact with the studied objects, 
mainly by the means of satellite-based sensors 
(Death, 2008). Spectral images, obtained as a re-
sult of “photographing” the Earth surface in dif-
ferent bands from space, are further used by sci-
entists and practitioners to assess features of land-
based objects. As far as remote sensing technique 
is rapidly developing worldwide, its application 
is also spreading to more and more branches of 
science and economy. For example, it is hardly 
believable that modern populational ecology, en-
vironmental science, precision agriculture, eco-
nomics, military science, climatology, geology, 

logistics, etc., would have been developed so rap-
idly and provide mankind with novel insights on 
the life on the Earth and innovative high-quality 
services with no remote sensing technique ap-
plied in the studies (Lykhovyd et al., 2020a).

Speaking about agriculture, remote sensing 
brought such amazing opportunities for scien-
tists and practitioners as remote control for crop 
growth and development, machinery use, envi-
ronmental conditions, crop yield prediction, phe-
nology, infestation of crops with pests, insects, 
and diseases, etc. (Bastiaanssen et al., 2000). 
Environmental monitoring for vegetation cover 
is widely assisted by remote sensing technolo-
gies within geoinformation systems (Lykhovyd, 
2021b). Wide horizons are open for crop model-
ing and simulation of their productive processes 
based on various information obtained from satel-
lite spectral imagery (Bouman, 1995; Maselli et 
al., 2000; Tripathy et al., 2013; Lykhovyd et al., 
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2020b; Lykhovyd, 2021a). Nowadays, decision 
support systems for agricultural producers are 
implementing remote sensing data and scientifi-
cally grounded ways of crop control by the means 
of satellite-based imagery to enhance agricultural 
land productivity and make technological deci-
sions of practitioners more weighed and reason-
able (McBratney et al., 2005).

As it has been mentioned before, science ap-
plies satellite imagery for its purposes, mainly not 
in its raw state, but through processing the im-
ages from different spectral bands and calculat-
ing various indices to represent the properties of 
the Earth-based objects. For example, agronomy 
applies about 150 different vegetation indices to 
describe plant, soil cover, and water availability 
conditions (Lykhovyd, 2022). However, only few 
of these indices found wide practical implemen-
tation. Nowadays, agricultural practice mostly 
applies normalized difference vegetation index 
(NDVI), proposed in 1974, to support crop pro-
ducers (Rouse et al., 1974). Most digital farming 
platforms are based on NDVI images. Therefore, 
it is reasonable to investigate this vegetation in-
dex thoroughly to find its suitability for something 
more than just crop monitoring. For example, it 
could be a prospective index for soil properties 
monitoring on the areas, which are free from liv-
ing plants, especially, in the areas subjected to 
various negative environmental impacts (Lyk-
hovyd et al., 2019). So, quantitative remote sens-
ing could be used for soil properties estimation 
(Ben-Dor, 2002), besides there were attempts to 
adopt it for degraded land identification by NDVI 
values (Abdulhussein & Mihalache, 2021). 

We find it interesting from theoretical and 
practical points of view to assess NDVI for suit-
ability to estimate soil fertility, especially, such 
index as humus content. The hypothesis of our 
study is that NDVI could be used for assess-
ment of humus content in soils if it is screened 
in the fallow-field (bare field after harvesting or 
in pre-sowing period). If it is so, reasonable use 
of NDVI could be helpful to reduce financial and 
time expenditures for soil surveys. The hypoth-
esis is based on the fact that humus is an organic 
matter of the soil, and it has its unique spectral 
reflectance, while soil organic matter content 
was proved to be precisely recognized through 
the near-infrared (NIR) spectral band (Heil & 
Schmidhalter, 2021). As NDVI computation en-
gages NIR spectral band, it is highly likely that 
this vegetation index might be applied for remote 

soil humus content determination in the surface 
soil layer (up to the depth of 0–30 cm).

MATERIALS AND METHODS 

The study was carried out in the fallow-field 
(which lasts from November to February) period 
of 2022–2023 using bare-soil cloud-free NDVI 
imagery for the fields in different agricultural dis-
tricts of Kherson oblast, Southern Ukraine. The 
screens of NDVI for the studied fields were ob-
tained at OneSoil AI platform, as well as aver-
aged index values for each field. In total, 1478 
individual bare-soil NDVI values for the fields, 
located in different districts of Kherson oblast, 
were analyzed and generalized. The soil humus 
content by the fields or agricultural districts 
were taken from the results of the regional soil 
surveys (Bychkov et al., 1987) and soil surveys, 
conducted in the framework of field experiments 
carried out at the Institute of Irrigated Agriculture 
of NAAS (now reorganized into the Institute of 
Climate-Smart Agriculture of NAAS). After the 
NDVI data generalization and association with 
corresponding humus content using geotagging, 
34 data pairs “bare-soil NDVI (pts.) – humus con-
tent (%)” were created and processed in statistical 
analysis by the means of the best subsets regres-
sion in BioStat v.7. In total, nine regression func-
tions were tested, as it is described in the Table 1.

The location of the studied fields (for bare-soil 
NDVI derivation) in Kherson oblast is depicted in 
the Figure 1. The agglomerations of the fields are 
marked with the symbol “” on the background 
of OneSoil AI NDVI platform screen

Table 1. Regression functions evaluated within the 
best subsets regression test in BioStat v.7 to predict the 
content of humus in the soils by the values of bare-soil 
NDVI in Kherson oblast

Function name Equation

Linear Y=a*x+b

Quadratic Y=a*x2+b*x+c

Cubic Y=a*x3+b*x2+c*x+d

Stepwise Y=a*xb

Exponential-1 (Composit) Y=a*bx

Hyperbolic Y=a+b/x

Logarithmic Y=a+b*ln(x)

Exponential-2 Y=ea+bx

Sigmoid Y=ea+b/x
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Further, artificial neural networks (ANN) 
with back propagation learning algorithm of dif-
ferent architecture and learning rate were applied 
to derive soil humus content by NDVI. The ANN 
were created and assessed using Tiberius XL soft-
ware (Brierley, 1998). The types of ANN (train-
ing was conducted during 1000 epochs), used in 
the study, are described in the Table 2. We tried to 
test the ANN with the highest and the lowest pos-
sible number of neurons at both maximum (1.0) 
and average (0.7) learning rate.

In the end, the combined ANN-regression 
model was derived to estimate the content of 
humus in the soils of Kherson oblast using the 
values of spatial NDVI. The results of the ANN-
derived model were additionally processed using 
the best subsets regression analysis in BioStat v.7 
to create the combined cubic regression model 
with the best fitting quality and prediction accu-
racy (Lavrenko et al., 2022).

The quality of the model fitting, its adequacy 
to the input dataset, was assessed using Pearson’s 
correlation coefficient (R) and the coefficient of 
determination (R2). The evaluation scale we re-
ferred to in this study was as proposed by Evans 
(1996). Accuracy testing was performed through 
the computation of mean absolute percentage er-
ror (MAPE) and its score interpretation using the 
grades by Blasco et al. (2013). The computations 
were performed using Microsoft Excel 365 and 
BioStat v.7 software.

RESULTS AND DISCUSSION

Nine regression models built within the best 
subsets analysis were evaluated by their fitting 
quality first. The best fitting quality (moderate 
strength of relationship) is observed for cubic 
model (R = 0.4973, R2 = 0.2473), although it is 
impossible to deny overfitting. The best fitting 
quality among other models with no overfitting 
is attributed to linear model (R = 0.3776, R2 = 
0.1426). The graphs of the proposed regression 
models fitting are presented in the Figure 2. The 
values of fitting quality assessment coefficients 
are presented in the Table 3.

Apart from fitting adequacy, regression mod-
els were assessed in terms of the prediction accu-
racy by the values of MAPE. The best accuracy by 
the mentioned index is attributed to cubic model 
(MAPE = 13.77%), with slightly less accuracy of 
quadratic (15.26%) and linear (15.41%) ones, re-
spectively. All the mentioned models are of good 

Figure 1. The screen of OneSoil AI platform for barre-soil NDVI values derivation 
with the marks of the fields and checkpoints used in the study

Table 2. Artificial neural networks used to predict the 
content of humus in the soils by the values of bare-soil 
NDVI in Kherson oblast

Variant Number of neurons; learning rate

1 5; 1.0

2 5; 0.7

3 1; 1.0

4 1; 0.7
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prediction accuracy according to the Blasco et al. 
(2013) gradation.

Somewhat better fitting quality and prediction 
accuracy was obtained using ANN with 5 neu-
rons in the hidden layer and learning rate of 0.8. 
Less number of neurons in the hidden layer and 
increased learning rate resulted in substantial de-
crease in the fitting quality and precision. The best 
ANN model overscored the cubic regression both 
in terms of approximation (R2 0.29 vs. 0.25) and 

accuracy (MAPE 12.28% vs. 13.77%). The statis-
tics for ANN-based modeling is in the Table 4.

Although ANN-based models are better than 
regression ones, it is impossible to apply them out 
of the software environment they were built in. 
In this regard, a combined model, which is the 
improved cubic regression model adjusted by the 
ANN simulation, is used. The fitting performance 
of such a model in our study is superior to regular 
cubic model (R2 = 0.29 vs 0.25), as well as the ac-
curacy (MAPE = 13.22% vs. 13.77%). The model 
looks like the Eq. 1, where Y represents the con-
tent of humus in the soil (%), and x is the average 
value of bare-soil NDVI (pts.):

	 Y = 43.164 – 1168.8x +
	 12122x2 – 54272x3 + 89044x4	 (1)

The proposed model has good prediction ac-
curacy, moderate fitting quality, and it could be 
used for computations in any working environ-
ment in contrast to the ANN-based model.

The study by Kumar et al. (2016) was conduct-
ed on quite similar subject. The authors discov-
ered strong regression relationship (R2 = 0.7254) 

Figure 2. Approximation graphs for nine regression models used in the 
study of humus content in the soil derivation by spatial NDVI

Table 3. Evaluation of regression models fitting quality
Function name R R2

Linear 0.3776 0.1426

Quadratic 0.3843 0.1477

Cubic 0.4973 0.2473

Stepwise 0.3751 0.1407

Exponential-1 (composit) 0.3791 0.1438

Hyperbolic 0.3621 0.1311

Logarithmic 0.3707 0.1374

Exponential-2 0.3791 0.1438

Sigmoid 0.3690 0.1362

Table 4. Basic evaluation of ANN-based modeling of soil humus content using bare-soil NDVI values
ANN type R R2 MAPE

5 neurons; learning rate 1.0 0.45 0.20 13.27%

1 neuron; learning rate 1.0 0.48 0.23 12.45%

1 neuron; learning rate 0.8 0.48 0.23 14.24%

5 neurons; learning rate 0.8 0.54 0.29 12.28%
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between bare-soil NDVI and soil organic carbon 
content (SOC). As far as SOC is strongly related 
to humus content in the soil, this study is another 
supporting one for our theory. Herbei et al. (2022) 
also established high strength of the relationship 
between NDVI and humus content in soils with 
R2=0.538. Larkin et al. (2020) established strong 
linear relationship between NDVI and humus con-
tent with R=0.84.

Therefore, notwithstanding the fact tat there 
is a lack of scientific evidence for prediction of 
soil humus content based on the values of spatial 
NDVI now, the topic is promising, and relevant, 
and further scientific investigations are required 
to draw final conclusions about the strength, di-
rection, and reliability of the relationship between 
these parameters.

CONCLUSIONS

The results of the preliminary study discov-
ered an opportunity to use bare-soil NDVI values 
to derive the amount of humus content in the soils 
of Kherson oblast. The combined approach to 
prediction of humus content using an integrated 
ANN and cubic regression model showed good 
prediction accuracy (MAPE = 13.22%) and mod-
erate fitting quality (R1 = 0.29). Considering that 
the results are encouraging, further investigation 
of the approach to soil humus content derivation 
from bare-soil NDVI is to be conducted.
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