Czasopismo
2019
|
Vol. 52, nr 1
|
61--81
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We prove the “hot spots” conjecture on the Vicsek set. Specifically, we will show that every eigen-function of the second smallest eigenvalue of the Neumann Laplacian on the Vicsek set attains its maximum and minimum on the boundary.
Czasopismo
Rocznik
Tom
Strony
61--81
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
autor
- Department of Mathematics, United States Naval Academy, Annapolis, MD 21402 USA, ionescu@usna.edu
autor
- United States Navy, tsavage1352@att.net
Bibliografia
- [1] Atar R., Burdzy K., On Neumann eigenfunctions in lip domains, J. Amer. Math. Soc., 2004, 17(2), 243–265
- [2] Bañuelos R., Burdzy K., On the “hot spots” conjecture of J. Rauch, J. Funct. Anal., 1999, 164(1), 1–33
- [3] Jerison D., Nadirashvili N., The “hot spots” conjecture for domains with two axes of symmetry, J. Amer. Math. Soc., 2000, 13(4), 741–772
- [4] Miyamoto Y., The “hot spots” conjecture for a certain class of planar convex domains, J. Math. Phys., 2009, 50(10), 103530
- [5] Krejcirik D., Tušek M., Location of hot spots in thin curved strips, 2017, arXiv e-prints arXiv:1709.01279
- [6] Burdzy K., The hot spots problem in planar domains with one hole, Duke Math. J., 2005, 129(3), 481–502
- [7] Burdzy K., Werner W., A counterexample to the “hot spots” conjecture, Ann. of Math. (2), 1999, 149(1), 309–317
- [8] Kigami J., Analysis on fractals, volume 143 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2001
- [9] Strichartz R. S., Differential Equations on Fractals: A Tutorial, Princeton University Press, Princeton, NJ, 2006
- [10] Fukushima M., Shima T., On a spectral analysis for the Sierpinski gasket, Potential Anal., 1992, 1(1), 1–35
- [11] Rammal R., Toulouse G., Random walks on fractal structures and percolation clusters, J. Phys. Lett., 1983, 44(10), L13–L22
- [12] Shima T., On eigenvalue problems for the random walks on the Sierpinski pre-gaskets, Japan J. Indust. Appl. Math., 1991, 8(1), 127–141
- [13] Shima T., On eigenvalue problems for Laplacians on p.c.f. self-similar sets, Japan J. Indust. Appl. Math., 1996, 13(1), 1–23
- [14] Li X.-H., Ruan H.-J., The “hot spots” conjecture on higher dimensional Sierpinski gaskets, Commun. Pure Appl. Anal., 2016, 15(1), 287–297
- [15] Ruan H.-J., The “hot spots” conjecture for the Sierpinski gasket, Nonlinear Anal., 2012, 75(2), 469–476
- [16] Ruan H.-J., Zheng Y.-W., The “hot spots” conjecture on the level-3 Sierpinski gasket, Nonlinear Anal., 2013, 81, 101–109
- [17] Lau K.-S., Li X.-H., Ruan H.-J., A counterexample to the “hot spots” conjecture on nested fractals, J. Fourier Anal. Appl., 2018, 24(1), 210–225
- [18] Barlow M. T., Diffusions on fractals, In: Lectures on Probability Theory and Statistics (Saint-Flour, 1995), Lecture Notes in Math., Springer Berlin Heidelberg, 1998, 1690, 1–121
- [19] Malozemov L., Teplyaev A., Self-similarity, operators and dynamics, Math. Phys. Anal. Geom., 2003, 6(3), 201–218
- [20] Metz V., How many diffusions exist on the Vicsek snowflake?, Acta Appl. Math., 1993, 32(3), 227–241
- [21] Zhou D., Spectral analysis of Laplacians on the Vicsek set, Pacific J. Math., 2009, 241(2), 369–398
- [22] Constantin S., Strichartz R. S., Wheeler M., Analysis of the Laplacian and spectral operators on the Vicsek set, Commun. Pure Appl. Anal., 2011, 10(1), 1–44
- [23] Barnsley M. F., Rising H., Fractals everywhere, Academic Press Professional, Boston, MA, second edition, 1993
- [24] Hutchinson J. E., Fractals and self-similarity, Indiana Univ. Math. J., 1981, 30(5), 713–747
- [25] Maxima, Maxima, a computer algebra system, version 5.41.0, 2017, http://maxima.sourceforge.net/
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ff792bea-15c2-448a-9bd9-56c21d834090