Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 23, no. 3 | art. no. e154, 2023
Tytuł artykułu

A review on numerical modelling techniques in friction stir processing: current and future perspective

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Friction stir processing (FSP) has gained significant attention worldwide since its inception due to its remarkable solid-state characteristics and microstructure refinement. However, the complex geometry of the FSP and 3-D features makes it challenging to create a set of governing equations for analyzing the post-process theoretical behavior. Due to significant deformation, experiments cannot provide comprehensive information throughout the real process, which frequently entails expense, resources, and time; numerical analysis has been examined extensively over the former to solve these concerns. Numerous alternative processes are to be simulated using FSP’s numerical analysis before physical testing to better understand the impact of various system characteristics. An attempt has been made to explore the latest research on the development of various numerical modelling techniques that lead to meaningful insight to enhance the performance of FSP. An advanced numerical technique for studying the influence of different field variables, changes in tool orientation on material flow coupled with appropriate surface contact involving temperature-dependent coefficient of friction values using advanced smoothed particle hydrodynamics on a GPU hardware configuration is still in future scope. This necessity to develop thermo-mechanical models of surface composites facilitates accurate prediction of the thermal record and particle dispersion in FSP. This article compiles computational approaches, the potential of different FEA software, and other post-processing parameters, viz., heat generation, temperature distribution, and material transition. In this regard, some vital challenges and issues regarding the numerical approaches of friction stir processing remain to be addressed, and opportunities for future research prospects are thus recommended.
Wydawca

Rocznik
Strony
art. no. e154, 2023
Opis fizyczny
Bibliogr. 167 poz., rys., wykr.
Twórcy
  • Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia, psrao@ymail.com
  • Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
  • Institute of Transport Infrastructure, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
Bibliografia
  • 1. Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ. "Friction-Stir Butt Welding", GB Patent No. 9125978.8, International patent application No. PCT/ GB92/02203, 1991.
  • 2. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK. High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater. 1999;42(2):163-8. https://doi.org/10. 1016/S1359-6462(99)00329-2.
  • 3. Mishra RS, De PS, Kumar N. Friction stir welding and processing. Sci Eng. 2014. https://doi.org/10.1007/978-3-319-07043-8.
  • 4. Mishra RS, Ma ZY, Charit I. Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A. 2003;341(1–2):307–10. https://doi.org/10.1016/S0921-5093(02) 00199-5.
  • 5. Ma ZY. Friction stir processing technology: a review. Metall Mater Trans A Phys Metall Mater Sci. 2008;39A(3):642–58. https://doi.org/10.1007/s11661-007-9459-0.
  • 6. Srivastava AK, et al. 20th century uninterrupted growth in fric tion stir processing of lightweight composites and alloys. Mater Chem Phys. 2021. https://doi.org/10.1016/j.matchemphys.2021. 124572.
  • 7. Zykova AP, Tarasov SY, Chumaevskiy AV, Kolubaev EA. A review of friction stir processing of structural metallic materials: process, properties, and methods. Metals (Basel). 2020;10(6):1–35. https://doi.org/10.3390/met10060772.
  • 8. Gerlich AP. Critical assessment: friction stir processing, potential, and problems. Mater Sci Technol (United Kingdom). 2017;33(10):1139–44. https://doi.org/10.1080/02670836.2017. 1300420.
  • 9. Kumar S. Ultrasonic assisted friction stir processing of 6063 aluminum alloy. Arch Civ Mech Eng. 2016;16(3):473–84. https:// doi.org/10.1016/j.acme.2016.03.002.
  • 10. Bahrami A, Pech-Canul MI, Soltani N, Gutiérrez CA, Kamm PH, Gurlo A. Tailoring microstructure and properties of bilayer- graded Al/B4C/MgAl2O4 composites by single-stage pressureless infiltration. J Alloys Compd. 2017;694:408–18. https://doi.org/ 10.1016/j.jallcom.2016.09.284.
  • 11. Węglowski MS. Friction stir processing-state of the art. Arch Civ Mech Eng. 2018;18(1):114–29. https://doi.org/10.1016/j.acme.2017.06.002.
  • 12. Ma ZY, Mishra RS, Mahoney MW. Superplasticity in cast A356 induced via friction stir processing. Scr Mater. 2004;50(7):931–5. https://doi.org/10.1016/j.scriptamat.2004.01.012.
  • 13. Li K, Liu X, Zhao Y. Research status and prospect of friction stir processing technology. Coatings. 2019. https://doi.org/10.3390/ COATINGS9020129.
  • 14. Srinivasan C, Karunanithi M. Fabrication of surface level Cu/ SiCp nanocomposites by friction stir processing route. J Nano-technol. 2015. https://doi.org/10.1155/2015/612617.
  • 15. Kurt A, Uygur I, Cete E. Surface modification of aluminium by friction stir processing. J Mater Process Technol. 2011;211(3):313–7. https://doi.org/10.1016/j.jmatprotec.2010. 09.020.
  • 16. Gangil N, Siddiquee AN, Maheshwari S. Aluminium based in- situ composite fabrication through friction stir processing: a review. J Alloys Compd. 2017;715:91–104. https://doi.org/10. 1016/j.jallcom.2017.04.309.
  • 17. Sunil BR, Reddy GPK, Patle H, Dumpala R. Magnesium based surface metal matrix composites by friction stir processing. J Magnes Alloy. 2016;4(1):52–61. https://doi.org/10.1016/j.jma. 2016.02.001.
  • 18. Harwani D, Badheka V, Patel V, Li W, Andersson J. Develop- ing superplasticity in magnesium alloys with the help of friction stir processing and its variants - a review. J Mater Res Technol. 2021;12(April):2055–75. https://doi.org/10.1016/j.jmrt.2021.03. 115.
  • 19. Wang W, et al. Friction stir processing of magnesium alloys: a review. Acta Metall Sin English Lett. 2020;33(1):43–57. https:// doi.org/10.1007/s40195-019-00971-7.
  • 20. Singh VP, Patel SK, Ranjan A, Kuriachen B. Recent research progress in solid state friction-stir welding of aluminium– magnesium alloys: a critical review. J Mater Res Technol. 2020;9(3):6217–56. https://doi.org/10.1016/j.jmrt.2020.01.008.
  • 21. Mishra RS, Ma ZY. Friction stir welding and processing. Mater Sci Eng R Rep. 2005;50(1–2):1–78. https://doi.org/10.1016/j. mser.2005.07.001.
  • 22. Patil NA, Pedapati SR, Mamat OB. A review on aluminium hybrid surface composite fabrication using friction stir processing. Arch Metall Mater. 2020;65(1):441–57. https://doi.org/10. 24425/amm.2020.131747.
  • 23. Bharti S, Hetiya ND, Patel KM. A review on manufacturing the surface composites by friction stir processing. Mater Manuf Process. 2021;36(2):135–70. https://doi.org/10.1080/10426914. 2020.1813897.
  • 24. Sharma DK, Badheka V, Patel V, Upadhyay G. Recent developments in hybrid surface metal matrix composites produced by friction stir processing: a review. J Tribol. 2021. https://doi.org/ 10.1115/1.4049590.
  • 25. He X, Gu F, Ball A. A review of numerical analysis of friction stir welding. Prog Mater Sci. 2014;65:1–66. https:// doi.org/10.1016/j.pmatsci.2014.03.003.
  • 26. Bahari MS, Jaffarullah MS, Mohamed Z. Heat analysis in friction stir welding using finite element method. J Mech Eng. 2018;5(Specialissue4):174–88.
  • 27. Schmidt HNB, Dickerson TL, Hattel JH. Material flow in butt friction stir welds in AA2024-T3. Acta Mater. 2006;54(4):1199-209. https://doi.org/10.1016/j.actamat.2005.10.052.
  • 28. Nandan R, Roy GG, Lienert TJ, Debroy T. Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel. Sci Technol Weld Join. 2006;11(5):526-37. https://doi.org/10.1179/174329306X107692.
  • 29. Derazkola HA, Garcia E, Elyasi M. Underwater friction stir welding of PC: Experimental study and thermo-mechanical modelling. J Manuf Process. 2021;65(January):161–73. https:// doi.org/10.1016/j.jmapro.2021.03.034.
  • 30. Wan ZY, Zhang Z, Zhou X. Finite element modeling of grain growth by point tracking method in friction stir welding of AA6082-T6. Int J Adv Manuf Technol. 2017;90(9–12):3567-74. https://doi.org/10.1007/s00170-016-9632-y.
  • 31. Fashami HAA, Arab NBM, Gollo MH, Nami B. Numerical and experimental investigation of defects formation during friction stir processing on AZ91. SN Appl Sci. 2021. https://doi.org/10.1007/s42452-020-04032-y.
  • 32. Mehdi H, Mishra RS. Effect of friction stir processing on mechanical properties and heat transfer of TIG welded joint of AA6061 and AA7075. Def Technol. 2020. https://doi.org/10.1016/j.dt.2020.04.014.
  • 33. Cremonesi M, Meduri S, Perego U, Frangi A. An explicit Lagrangian finite element method for free-surface weakly compressible flows. Comput Part Mech. 2017;4(3):357–69. https:// doi.org/10.1007/s40571-016-0122-7.
  • 34. Jain R, Pal SK, Singh SB. Numerical modeling methodologies for friction stir welding process. Elsevier Ltd. 2017. https://doi. org/10.1016/B978-0-85709-481-0.00005-7.
  • 35. Ritti L, Bhat T. Design and numerical analysis of tool for FSP simulation of magnesium alloys. Mater Today Proc. 2021;46:2489–97. https:// doi.org/10.1016/j.matpr.2021.01.414.
  • 36. Buffa G, Fratini L. Friction stir welding of steels: Process design through continuum based FEM model. Sci Technol Weld Join. 2009;14(3):239–46. https://doi.org/10.1179/136217109X 421328.
  • 37. Buffa G, Hua J, Shivpuri R, Fratini L. A continuum based fem model for friction stir welding-model development. Mater Sci Eng A. 2006;419(1–2):389–96. https://doi.org/10.1016/j.msea.2005.09.040.
  • 38. Nielsen KL. Ductile damage development in friction stir welded aluminum (AA2024) joints. Eng Fract Mech. 2008;75(10):2795– 811. https://doi.org/10.1016/j.engfracmech.2008.01.012.
  • 39. Vignesh RV, Padmanaban R. Modelling of peak temperature during friction stir processing of magnesium alloy AZ91. IOP Conf Ser Mater Sci Eng. 2018. https://doi.org/10.1088/1757-899X/ 310/1/012019.
  • 40. Asadi P, Givi MKB, Akbari M. Microstructural simulation of friction stir welding using a cellular automaton method: a micro- structure prediction of AZ91 magnesium alloy. Int J Mech Mater Eng. 2015. https://doi.org/10.1186/s40712-015-0048-5.
  • 41. Asadi P, Givi MKB, Akbari M. Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy. Int J Adv Manuf Technol. 2016;83(1–4):301–11. https:// doi.org/10.1007/s00170-015-7595-z.
  • 42. Boscheri W, Dumbser M. High order accurate direct Arbitrary- Lagrangian–Eulerian ADER-WENO finite volume schemes on moving curvilinear unstructured meshes. Comput Fluids. 2016;136:48–66. https://doi.org/10.1016/j.compfluid.2016.05. 020.
  • 43. Priyadarshini A, Pal SK, Samantaray AK. Finite element modeling of chip formation in orthogonal machining. Stat Comput Tech Manuf. 2012;9783642258:101–44. https://doi.org/10.1007/ 978-3-642-25859-6_3.
  • 44. Bastier A, Maitournam MH, Roger F, Van KD. Modelling of the residual state of friction stir welded plates. J Mater Process Technol. 2008;200(1–3):25–37. https://doi.org/10.1016/j.jmatp rotec.2007.10.083.
  • 45. Braeunig J-P, Chaudet B. Study of a collocated Lagrange-remap scheme for multi-material flows adapted to HPC. Int J Numer Methods Fluids. 2016. https://doi.org/10.1002/fld.428.
  • 46. Cho JH, Dawson PR. Investigation on texture evolution during friction stir welding of stainless steel. Metall Mater Trans A Phys Metall Mater Sci. 2006;37(4):1147–64. https://doi.org/10.1007/ s11661-006-1093-8.
  • 47. Cho JH, Boyce DE, Dawson PR. Modelling of strain hardening during friction stir welding of stainless steel. Model Simul Mater Sci Eng. 2007;15(5):469–86. https://doi.org/10.1088/0965-0393/ 15/5/007.
  • 48. Cho JH, Boyce DE, Dawson PR. Modeling strain hardening and texture evolution in friction stir welding of stainless steel. Mater Sci Eng A. 2005;398(1–2):146–63. https:// doi.org/10.1016/j.msea.2005.03.002.
  • 49. Feulvarch E, Roux JC, Bergheau JM. A simple and robust mov ing mesh technique for the finite element simulation of friction stir welding. J Comput Appl Math. 2013;246:269–77. https://doi.org/10.1016/j.cam.2012.07.013.
  • 50. Meyghani B, Awang M. The influence of the tool tilt angle on the heat generation and the material behavior in friction stir weld- ing (FSW). Metals (Basel). 2022. https://doi.org/10.21203/rs.3. rs-1984818/v1License.
  • 51. Meyghani B, Awang MB, Emamian SS, Nor MKBM, Pedapati SR. A comparison of different finite element methods in the thermal analysis of friction stir welding (FSW). Metals (Basel). 2017;7(10):1–23. https://doi.org/10.3390/met7100450.
  • 52. Altair University, Introduction to Explicit Analysis with Radioss. 2020.
  • 53. Zhang Z, Liu YL, Chen JT. Effect of shoulder size on the temperature rise and the material deformation in friction stir welding. Int J Adv Manuf Technol. 2009;45(9–10):889–95. https:// doi.org/10.1007/s00170-009-2034-7.
  • 54. Fratini L, Buffa G. Continuous dynamic recrystallization phenomena modelling in friction stir welding of aluminium alloys: a neural-network-based approach. Proc Inst Mech Eng Part B J Eng Manuf. 2007;221(5):857-64. https://doi.org/10.1243/09544 054JEM674.
  • 55. Bagheri B, Abdollahzadeh A, Abbasi M, Kokabi AH. Effect of vibration on machining and mechanical properties of AZ91 alloy during FSP: modeling and experiments. Int J Mater Form. 2020. https://doi.org/10.1007/s12289-020-01551-2.
  • 56. Chen C, Kovacevic R. Thermomechanical modelling and force analysis of friction stir welding by the finite element method. Proc Inst Mech Eng Part C J Mech Eng Sci. 2004;218(5):509-20. https://doi.org/10.1243/095440604323052292.
  • 57. Chenot JL, Massoni E. Finite element modelling and control of new metal forming processes. Int J Mach Tools Manuf. 2006;46(11):1194–200. https://doi.org/10.1016/j.ijmachtools. 2006.01.031.
  • 58. Buffa G, Hua J, Shivpuri R, Fratini L. Design of the friction stir welding tool using the continuum based FEM model. Mater Sci Eng A. 2006;419(1–2):381–8. https://doi.org/10.1016/j.msea. 2005.09.041.
  • 59. Khandkar MZH, Khan JA, Reynolds AP, Sutton MA. Predicting residual thermal stresses in friction stir welded metals. J Mater Process Technol. 2006;174(1–3):195–203. https://doi.org/10.1016/j.jmatprotec.2005.12.013.
  • 60. Jain R, Pal SK, Singh SB. Thermomechanical simulation of friction stir welding process using Lagrangian method; 2018, p. 103-146. https://doi.org/10.1007/978-981-10-8518-5_4.
  • 61. Gök K, Aydin M. Investigations of friction stir welding process using finite element method. Int J Adv Manuf Technol. 2013;68(1-4):775–80. https:// doi.org/101007/ s00170-013-4798-z.
  • 62. Colegrove PA, Shercliff HR. Development of Trivex friction stir welding tool part 1 two-dimensional flow modelling and experimental validation. Sci Technol Weld Join. 2004;9(4):345–51. https://doi.org/10.1179/136217104225021670.
  • 63. Colegrove PA, Shercliff HR. Development of Trivex friction stir welding tool Part 2 three-dimensional flow modelling. Sci Technol Weld Join. 2004;9(4):352-61. https://doi.org/10.1179/136217104225021661.
  • 64. Contuzzi N, Campanelli SL, Casalino G, Ludovico AD. On the role of the thermal contact conductance during the friction stir welding of an AA5754-H111 butt joint. Appl Therm Eng. 2016;104:263-73. https://doi.org/10.1016/j.applt.herma.leng. 2016.05.071.
  • 65. Miles MP, Nelson TW, Gunter C, Liu FC, Fourment L, Mathis T. Predicting recrystallized grain size in friction stir processed 304L stainless steel. J Mater Sci Technol. 2019;35(4):491-8. https:// doi.org/10.1016/j.jmst.2018.10.021.
  • 66. Ren JG, Wang L, Xu DK, Xie LY, Zhang ZC. Analysis and modeling of friction stir processing-based crack repairing in 2024 aluminum alloy. Acta Metall Sin English Lett. 2017;30(3):228–37. https://doi.org/10.1007/s40195-016-0489-8.
  • 67. Bellala SSK, Pedapati SR, Marode RV (2022) Comparative study of thermal modelling using Eulerian and SPH techniques for FSW. In: IET digital library, engineering technology international conference (ETIC 2022); 2022. p. 76–82. https://doi.org/ 10.1049/ICP.2022.2573.
  • 68. Hamilton R, Mackenzie D, Li H. Multi-physics simulation of friction stir welding process. Eng Comput (Swansea, Wales). 2010;27(8):967–85. https://doi.org/10.1108/026444010110829 80.
  • 69. Chiumenti M, Cervera M, Agelet de Saracibar C, Dialami N. Numerical modeling of friction stir welding processes. Comput Methods Appl Mech Eng. 2013;254:353–69. https://doi.org/10.1016/j.cma.2012.09.013.
  • 70. Yu Z, Zhang W, Choo H, Feng Z. Transient heat and material flow modeling of friction stir processing of magnesium alloy using threaded tool. Metall Mater Trans A Phys Metall Mater Sci. 2012;43(2):724–37. https://doi.org/10.1007/s11661-011-0862-1.
  • 71. Fashami HAA, Arab NBM, Gollo MH, Nami B. Effect of multi-pass friction stir processing on thermal distribution and mechanical properties of AZ91. Mech Ind. 2020. https://doi.org/10.1051/ meca/2020042.
  • 72. Agha H, Fashami A, Hoseinpour M. The numerical modeling to study the multi-pass friction stir processing on magnesium casting alloy AZ91. Int J Adv Des Manuf Technol. 2019;12(4):9-16.
  • 73. Mimouni O, Badji R, Hadji M, Kouadri-David A, Rachid H, Chekroun N. Numerical simulation of temperature distribution and material flow during friction stir welding 2017A aluminum alloys. MS T 2019 Mater Sci Technol. 2019;12002:1034–40. https://doi.org/10.7449/2019/MST_2019_1034_1040.
  • 74. Benson DJ. A mixture theory for contact in multi-material Eulerian formulations. Comput Methods Appl Mech Eng. 1997;140(1–2):59-86. https://doi.org/10.1016/S0045-7825(96) 01050-X.
  • 75. Adetunla A, Akinlabi, E. Finite element analysis of the heat generated during FSP of 1100 Al alloy. 2019. https://doi.org/10.1007/978-981-15-5753-8_37.
  • 76. Ansari MA, Samanta A, Behnagh RA, Ding H. An efficient coupled Eulerian–Lagrangian finite element model for friction stir processing. Int J Adv Manuf Technol. 2019;101(5-8):1495-508. https://doi.org/10.1007/s00170-018-3000-z.
  • 77. Dialami N, Chiumenti M, Cervera M, Agelet De Saracibar C. An apropos kinematic framework for the numerical modeling of friction stir welding. Comput Struct. 2013;117:48-57. https:// doi.org/10.1016/j.compstruc.2012.12.006.
  • 78. Dialami N, Cervera M, Chiumenti M, de Saracibar CA. A fast and accurate two-stage strategy to evaluate the effect of the pin tool profile on metal flow, torque and forces in friction stir welding. Int J Mech Sci. 2017;122(November):215-27. https://doi.org/10.1016/j.ijmecsci.2016.12.016.
  • 79. Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc. 1977;181(3):375-89. https:// doi.org/10.1093/ MNRAS/ 181.3.375.
  • 80. Monaghan JJ. Smoothed particle hydrodynamics. Annu Rev Astron Astrophys. 1992;30(1):543-74. https://doi.org/10.1146/annurev.aa.30.090192.002551.
  • 81. Monaghan JJ. Smoothed particle hydrodynamics. Rep Prog Phys. 2005;68(8):1703. https://doi.org/10.1088/0034-4885/68/8/R01.
  • 82. Tartakovsky AM, Ferris KF, Meakin P. Lagrangian particle model for multiphase flows. Comput Phys Commun. 2009;180(10):1874-81. https://doi.org/10.1016/j.cpc.2009.06.002.
  • 83. Monaghan JJ, Kajtar JB. SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun. 2009;180(10):1811-20. https://doi.org/10.1016/J.CPC.2009.05.008.
  • 84. Benz W, Asphaug E. Simulations of brittle solids using SPH. Comput Phys Commun. 1995;87:253-65.
  • 85. Cleary PW, Ha J. Three dimensional modelling of high pressure die casting. Int J Cast Met Res. 2000;12(6):357-65. https://doi.org/10.1080/13640461.2000.11819373.
  • 86. Pan W, Li D, Tartakovsky AM, Ahzi S, Khraisheh M, Khaleel M. A new smoothed particle hydrodynamics non-Newtonian model for friction stir welding: Process modeling and simulation of microstructure evolution in a magnesium alloy. Int J Plast. 2013;48:189-204. https://doi.org/10.1016/j.ijplas.2013.02.013.
  • 87. Fraser KA, St-Georges L, Kiss LI. Prediction of defects in a friction stir welded joint using the smoothed particle hydrodynamics method. 2013. https://www.researchgate.net/publication/27527 1401. Accessed 20 Apr 2023.
  • 88. Fraser K, Kiss LI, St-Georges L, Drolet D. “Optimization of friction stir weld joint quality using a meshfree fully-coupled thermo-mechanics approach. Metals (Basel). 2018. https://doi.org/10.3390/met8020101.
  • 89. Ansari MA, Behnagh RA. Numerical study of friction stir welding (FSW) plunging phase using smoothed particle hydrodynamics (SPH). Model Simul Mater Sci Eng. 2019. https://doi.org/10.1088/1361-651X/ab1ca7.
  • 90. Meyghani B, Awang MB, Wu CS. Thermal analysis of friction stir processing (FSP) using arbitrary Lagrangian–Eulerian (ALE) and smoothed particle hydrodynamics (SPH) meshing techniques. Materwiss Werksttech. 2020;51(5):550-7. https://doi.org/10.1002/mawe.201900222.
  • 91. Meyghani B, Awang M, Wu CS, Emamian S. Temperature dis- tribution investigation during friction stir welding (FSW) using smoothed-particle hydrodynamics (SPH). Lect Notes Mech Eng. 2020. https://doi.org/10.1007/978-981-15-5753-8_70.
  • 92. Vacondio R, et al. Grand challenges for smoothed particle hydrodynamics numerical schemes. Comput Part Mech. 2021;8(3):575-88. https://doi.org/10.1007/s40571-020-00354-1.
  • 93. Ebrahimzad P, Ghasempar M, Balali M. Friction stir processing of aerospace aluminum alloy by addition of carbon nano tube. Trans Indian Inst Met. 2017;70(9):2241-53. https://doi.org/10.1007/s12666-017-1062-5.
  • 94. Marode RV, Pedapati SR, Lemma TA. Effect of process parameters on AZ91/SiC surface composites for lightweight E-vehicles. In 2022 7th international conference on electric vehicular technology (ICEVT); 2022. p. 109–115. https://doi.org/10.1109/ ICEVT55516.2022.9924699.
  • 95. Farghadani M, Karimzadeh F, Enayati MH, Naghshehkesh N, Moghaddam AO. Fabrication of AZ91D/Cu/Mg2Cu and AZ91D/ Mg 2 Cu/MgCu 2 /MgO in-situ hybrid surface nanocomposites via friction stir processing. Surf Topogr Metrol Prop. 2020. https:// doi.org/10.1088/2051-672X/abb527.
  • 96. Yousefpour F, Jamaati R, Aval HJ. Synergistic effects of hybrid (HA+Ag) particles and friction stir processing in the design of a high-strength magnesium matrix bio-nano composite with an appropriate texture for biomedical applications. J Mech Behav Biomed Mater. 2022;125:104983. https:// doi.org/10.1016/j. jmbbm.2021.104983.
  • 97. Tutunchilar S, Haghpanahi M, Givi MKB, Asadi P, Bahemmat P. Simulation of material flow in friction stir processing of a cast Al–Si alloy. Mater Des. 2012;40:415–26. https://doi.org/10.1016/j.matdes.2012.04.001.
  • 98. Bussetta P, et al. Comparison of a fluid and a solid approach for the numerical simulation of friction stir welding with a non-cylindrical pin. Steel Res Int. 2014;85(6):968–79. https://doi.org/10.1002/srin.201300182.
  • 99. Dialami N, Chiumenti M, Cervera M, Agelet de Saracibar C, Ponthot JP. Material flow visualization in friction stir welding via particle tracing. Int J Mater Form. 2015;8(2):167–81. https:// doi.org/10.1007/s12289-013-1157-4.
  • 100. Salloomi KN. Fully coupled thermomechanical simulation of friction stir welding of aluminum 6061–T6 alloy T-joint. J Manuf Process. 2019;45:746–54. https://doi.org/10.1016/j.jmapro.2019. 06.030.
  • 101. Saha R, Biswas P. Temperature and stress evaluation during friction stir welding of inconel 718 alloy using finite element numerical simulation. J Mater Eng Perform. 2021;31(3):2002–11. https://doi.org/10.1007/s11665-021-06313-y.
  • 102. Wang C, Deng J, Dong C, Zhao Y. Numerical simulation and experimental studies on stationary shoulder friction stir welding of aluminum alloy T-Joint. Front Mater. 2022;9:898929. https://doi.org/10.3389/fmats.2022.898929.
  • 103. Mishin V, et al. Numerical simulation of the thermo-mechanical behavior of 6061 aluminum alloy during friction-stir welding. J Manuf Mater Process. 2022;6(4):68. https://doi.org/10.3390/ jmmp6040068.
  • 104. Zhu Z, Wang M, Zhang H, Zhang X, Yu T, Wu Z. A finite element model to simulate defect formation during friction stir welding. Metals (Basel). 2017. https://doi.org/10.3390/met70 70256.
  • 105. Shamanian M, Mostaan H, Safari M, Dezfooli MS. Friction-stir processing of Al-12%Si alloys: grain refinement, numerical simulation, microstructure evolution, dry sliding wear performance and hardness measurement. Metall Res Technol. 2017. https://doi.org/10.1051/metal/2016066.
  • 106. Salih OS, Ou H, Sun W. Heat generation, plastic deformation and residual stresses in friction stir welding of aluminium alloy. Int J Mech Sci. 2022. https://doi.org/10.1016/j.ijmecsci.2022.107827.
  • 107. Bhojwani S. Smoothed particle hydrodynamics modeling of the friction stir welding process. The University of Texas At El Paso; 2007.
  • 108. Timesli A, Zahrouni H, Braikat B, Moufki A, Lahmam H. Numerical Model Based on Meshless Method to Simulate FSW. In Proceedings of the Particle-Based Methods II - Fundamentals and Applications. 2011;651-662.
  • 109. Yang HG. Numerical simulation of the temperature and stress state on the additive friction stir with the smoothed particle hydrodynamics method. Strength Mater. 2020;52(1):24-31. https://doi.org/10.1007/s11223-020-00146-1.
  • 110. Eivani AR, Vafaeenezhad H, Jafarian HR, Zhou J. A novel approach to determine residual stress field during FSW of AZ91 Mg alloy using combined smoothed particle hydrodynamics/ neuro-fuzzy computations and ultrasonic testing. J Magnes Alloy. 2021;9(4):1304–28. https://doi.org/10.1016/j.jma.2020.11.018.
  • 111. Shishova E, Panzer F, Werz M, Eberhard P. Reversible inter- particle bonding in SPH for improved simulation of friction stir welding. Comput Part Mech. 2022. https://doi.org/10.1007/s40571-022-00510-9.
  • 112. Marode RV, Pedapati SR, Lemma TA, Somi V, Janga R. Thermo-mechanical modelling of friction stir processing of AZ91 alloy: using smoothed-particle hydrodynamics. Lubricants. 2022;10(12):1–20. https://doi.org/10.3390/lubricants10120355.
  • 113. Zinati RF, Razfar MR. Finite element simulation and experi- mental investigation of friction stir processing of Polyamide 6. Proc Inst Mech Eng Part B J Eng Manuf. 2015;229(12):2205–15. https://doi.org/10.1177/0954405414546705.
  • 114. Shojaeefard MH, Akbari M, Khalkhali A, Asadi P. Effect of tool pin profile on distribution of reinforcement particles during friction stir processing of B4C/aluminum composites. Proc Inst Mech Eng Part L J Mater Des Appl. 2018;232(8):637-51. https:// doi.org/10.1177/1464420716642471.
  • 115. Shojaeefard MH, Akbari M, Asadi P, Khalkhali A. The effect of reinforcement type on the microstructure, mechanical properties, and wear resistance of A356 matrix composites produced by FSP. Int J Adv Manuf Technol. 2017;91(1-4):1391-407. https://doi. org/10.1007/s00170-016-9853-0.
  • 116. Asadi P, Givi MKB, Rastgoo A, Akbari M, Zakeri V, Rasouli S. Predicting the grain size and hardness of AZ91/SiC nano-composite by artificial neural networks. Int J Adv Manuf Technol. 2012;63(9–12):1095–107. https:// doi.org/10.1007/ s00170-012-3972-z.
  • 117. Santos TG, Lopes N, MacHado M, Vilaça P, Miranda RM. Surface reinforcement of AA5083-H111 by friction stir processing assisted by electrical current. J Mater Process Technol. 2015;216:375–80. https://doi.org/10.1016/j.jmatprotec.2014.10. 005.
  • 118. Aziz SB, Dewan MW, Huggett DJ, Wahab MA, Okeil AM, Liao TW. Impact of Friction Stir Welding (FSW) process parameters on thermal modeling and heat generation of aluminum alloy joints. Acta Metall Sin English Lett. 2016;29(9):869-83. https://doi.org/10.1007/s40195-016-0466-2.
  • 119. Al-Badour F, Merah N, Shuaib A, Bazoune A. Coupled Eulerian Lagrangian finite element modeling of friction stir welding processes. J Mater Process Technol. 2013;213(8):1433-9. https:// doi.org/10.1016/j.jmatprotec.2013.02.014.
  • 120. Nandan R, DebRoy T, Bhadeshia HKDH. Recent advances in friction stir welding-process, weldment structure and properties. Prog Mater Sci. 2008;53(6):980-1023. https://doi.org/10. 1016/j.pmatsci.2008.05.001.
  • 121. Ammouri AH, Kheireddine AH, Kridli GT, Hamade RF. FEM optimization of process parameters and in-process cooling in the friction stir processing of magnesium alloy AZ31B. ASME Int Mech Eng Congr Expo Proc. 2013. https://doi.org/10.1115/ IMECE2013-62468.
  • 122. Janga VSR, Awang M, Yamin MF, Suhuddin UFH, Klusemann B, Dos Santos JF. Experimental and numerical analysis of refill friction stir spot welding of thin AA7075-T6 sheets. Materials (Basel). 2021;14(23):1-21. https://doi.org/10.3390/ma14237485.
  • 123. Kuykendall K, Nelson T, Sorensen C. On the selection of constitutive laws used in modeling friction stir welding. Int J Mach Tools Manuf. 2013;74:74-85. https:// doi.org/10.1016/j. ijmac htools.2013.07.004.
  • 124. Meyghani B, Awang M, Emamian S. A comparative study of finite element analysis for friction stir welding application. ARPN J Eng Appl Sci. 2016;11(22):12984–9.
  • 125. Kang SW, Jang BS. A study on computational fluid dynamics simulation of friction stir welding. Anal. Des. Mar. Struct.- Proceedings of 4th International Conference Marine Structure. MARSTRUCT 2013, no. October; 2013. p. 433–439. https://doi.org/10.1201/b15120-59.
  • 126. Fraser K. Robust and efficient meshfree solid thermo-mechanics simulation of friction stir welding. 2017. https://doi.org/10.13140/RG.2.2.13318.68169.
  • 127. Fraser KA, St-Georges L, Kiss LI, Chiricota Y. Hybrid thermo-mechanical contact algorithm for 3D SPH-FEM multi-physics simulations. Proceedings of 4th International Conference Part. Methods - Fundam. Appl. Part. 2015, no. September; 2015. p. 275–286.
  • 128. Pramanik A, Sanghvi H, Basak AK. Modern manufacturing engineering. 2015. https://doi.org/10.1007/978-3-319-20152-8.
  • 129. Schmidt H, Hattel J. A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sci Eng. 2005;13(1):77–93. https://doi.org/10.1088/0965-0393/13/1/006.
  • 130. Kim D, et al. Numerical simulation of friction stir butt weld- ing process for AA5083-H18 sheets. Eur J Mech A Solids. 2010;29(2):204–15. https://doi.org/10.1016/j.euromechsol.2009. 10.006.
  • 131. Patil S, Tay YY, Baratzadeh F, Lankarani H. Modeling of friction-stir butt-welds and its application in automotive bumper impact performance Part 2. Impact modeling and bumper crash performance. J Mech Sci Technol. 2017;31(7):3225–32. https:// doi.org/10.1007/s12206-017-0612-4.
  • 132. Babu N, Karunakaran N, Balasubramanian V. Numerical predictions and experimental investigation of the temperature distribution of friction stir welded AA 5059 aluminium alloy joints. Int J Mater Res. 2017;108(1):68–75. https://doi.org/10.3139/146. 111448.
  • 133. Chen G, Zhang S, Zhu Y, Yang C, Shi Q. Thermo-mechanical analysis of friction stir welding: a review on recent advances. Acta Metall Sin English Lett. 2020;33(1):3–12. https://doi.org/ 10.1007/s40195-019-00942-y.
  • 134. Schmidt H, Hattel J, Wert J. An analytical model for the heat generation in friction stir welding. Model Simul Mater Sci Eng. 2004;12(1):143–57. https://doi.org/10.1088/0965-0393/12/1/013.
  • 135. Kishta EEM, Abed FH, Darras BM. Nonlinear finite element simulation of friction stir processing of marine grade 5083 aluminum alloy. Eng Trans. 2014;62(4):313–28.
  • 136. Asadi P, Mahdavinejad RA, Tutunchilar S. Simulation and experimental investigation of FSP of AZ91 magnesium alloy. Mater Sci Eng A. 2011;528(21):6469-77. https:// doi. org/10.1016/j. msea.2011.05.035.
  • 137. Albakri AN, Mansoor B, Nassar H, Khraisheh MK. Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy a numerical and experimental investigation. J Mater Process Technol. 2013;213(2):279–90. https://doi.org/10.1016/j.jmatprotec.2012.09.015.
  • 138. Albakri AN, Mansoor B, Nassar H, Khraisheh MK. Simulation of friction stir processing with internally cooled tool. Adv Mater Res. 2012;445:560–5. https://doi.org/10.4028/www.scientific. net/AMR.445.560.
  • 139. Ibakri AN, Aljoaba SZ, Khraisheh MK. Modelling of friction stir processing with in process cooling using computational fluid dynamics analysis. Adv Sustain Manuf. 2011. https://doi.org/10.1007/978-3-642-20183-7.
  • 140. Cartigueyen S, Sukesh OP, Mahadevan K. Numerical and experimental investigations of heat generation during friction stir processing of copper. Procedia Eng. 2014;97:1069-78. https://doi.org/10.1016/j.proeng.2014.12.385.
  • 141. Dong P, Lu F, Hong JK, Cao Z. Coupled thermomechanical analysis of friction stir welding process using simplified models. Sci Technol Weld Join. 2001;6(5):281–7. https://doi.org/10.1179/ 136217101101538884.
  • 142. Mehdi H, Mishra RS. Analysis of material flow and heat transfer in reverse dual rotation friction stir welding: a review. Int J Steel Struct. 2019;19(2):422-34. https:// doi.org/10.1007/s13296-018-0131-x.
  • 143. Ranjan R, et al. Classification and identification of surface defects in friction stir welding: an image processing approach. J Manuf Process. 2016;22:237–53. https://doi.org/10.1016/j.jmapro.2016. 03.009.
  • 144. Memon S, Fydrych D, Fernandez AC, Derazkola HA, Derazkola HA. Effects of fsw tool plunge depth on properties of an Al-Mg-Si alloy t-joint: thermomechanical modeling and experimental evaluation. Materials (Basel). 2021. https://doi.org/10.3390/ma141 64754.
  • 145. Türkan M, Karakaş Ö. Numerical modeling of defect formation in friction stir welding. Mater Today Commun. 2022. https://doi.org/10.1016/j.mtcomm.2022.103539.
  • 146. Hassanamraji N, Eivani AR, Aboutalebi MR. Finite element simulation of deformation and heat transfer during friction stir processing of as-cast AZ91 magnesium alloy. J Mater Res Technol. 2021;14:2998-3017. https://doi.org/10.1016/j.jmrt.2021.08. 087.
  • 147. Zhang Z, Zhang HW. A fully coupled thermo-mechanical model of friction stir welding. Int J Adv Manuf Technol. 2008;37(3–4):279-93. https://doi.org/10.1007/s00170-007-0971-6.
  • 148. Nassar HW, Khraisheh MK. Simulation of material flow and heat evolution in friction stir processing incorporating melting. J Eng Mater Technol Trans ASME. 2012. https://doi.org/10.1115/1.4006918.
  • 149. Zhai M, Wu CS, Su H. Influence of tool tilt angle on heat transfer and material flow in friction stir welding. J Manuf Process. 2020;59:98-112. https://doi.org/10.1016/j.jmapro.2020.09.038.
  • 150. Zhang S, Shi Q, Liu Q, Xie R, Zhang G, Chen G. Effects of tool tilt angle on the in-process heat transfer and mass transfer during friction stir welding. Int J Heat Mass Transf. 2018;125:32-42. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.067.
  • 151. Dialami N, Cervera M, Chiumenti M. Effect of the tool tilt angle on the heat generation and the material flow in friction stir welding. Metals (Basel). 2019. https://doi.org/10.3390/met9010028.
  • 152. Dialami N, Chiumenti M, Cervera M, Agelet de Saracibar C. Challenges in thermo-mechanical analysis of friction stir welding processes. Arch Comput Methods Eng. 2016;24(1):189-225. https://doi.org/10.1007/S11831-015-9163-Y.
  • 153. Dialami N, Cervera M, Chiumenti M, de Saracibar CA. Local – global strategy for the prediction of residual stresses in FSW processes. Int J Adv Manuf Technol. 2017;88(9-12):3099-111. https://doi.org/10.1007/s00170-016-9016-3.
  • 154. de Saracibar CA. Challenges to be tackled in the computational modeling and numerical simulation of FSW processes. Metals. 2019. https://doi.org/10.3390/met9050573.
  • 155. Kubit A, Trzepiecinski T. A fully coupled thermo-mechanical numerical modelling of the refill friction stir spot welding process in Alclad 7075-T6 aluminium alloy sheets. Arch Civ Mech Eng. 2020. https://doi.org/10.1007/s43452-020-00127-w.
  • 156. de Saracibar CA, Chiumenti M, Cervera M, Dialami N, Seret A. Computational modeling and sub-grid scale stabilization of incompressibility and convection in the numerical simulation of friction stir welding processes. Arch Comput Methods Eng. 2014;21(1):337. https://doi.org/10.1007/s11831-014-9094-z.
  • 157. Talebi H, Froend M, Klusemann B. Application of adaptive element-free Galerkin method to simulate friction stir welding of aluminum. Procedia Eng. 2017;207:580-5. https://doi.org/10.1016/j.proeng.2017.10.1024.
  • 158. Tutum CC, Hattel JH. Numerical optimisation of friction stir welding: Review of future challenges. Sci Technol Weld Join. 2011;16(4):318–24. https://doi.org/10.1179/1362171811Y.00000 00011.
  • 159. Awang M. Simulation of friction stir spot welding (FSSW) process: study of Friction Phenomena. 2007.
  • 160. Janga VSR, Awang M, Yamin MF, Suhuddin UFH, Klusemann B, Dos Santos JF. Experimental and numerical analysis of refill friction stir spot welding of thin AA7075-T6 sheets. Materials (Basel). 2021;14(23):7485. https://doi.org/10.3390/ma14237485.
  • 161. Janga VSR, Awang M. Influence of plunge depth on temperatures and material flow behavior in refill friction stir spot welding of thin AA7075-T6 sheets: a numerical study. Metals (Basel). 2022;12(6):927. https://doi.org/10.3390/met12060927.
  • 162. Meyghani B, Wu C. Progress in thermomechanical analysis of friction stir welding. Chin J Mech Eng English Ed. 2020. https:// doi.org/10.1186/s10033-020-0434-7.
  • 163. Zhang Z. Comparison of two contact models in the simulation of friction stir welding process. J Mater Sci. 2008;43(17):5867-77. https://doi.org/10.1007/s10853-008-2865-x.
  • 164. Dialami N, Chiumenti M, Cervera M, Agelet De Saracibar C, Ponthot JP, Bussetta P. Numerical simulation and visualization of material flow in Friction Stir Welding via particle tracing. Comput Methods Appl Sci. 2014;33:157-69. https://doi.org/10. 1007/978-3-319-06136-8_7.
  • 165. Alfaro I, Racineux G, Poitou A, Cueto E, Chinesta F. Numerical simulation of friction stir welding by natural element methods. Int J Mater Form. 2009;2(4):225–34. https://doi.org/10.1007/ s12289-009-0406-z.
  • 166. Lasley MJ. A finite element simulation of temperature and material flow in friction stir welding. 2005.
  • 167. Assidi M, Fourment L, Guerdoux S, Nelson T. Friction model for friction stir welding process simulation: calibrations from welding experiments. Int J Mach Tools Manuf. 2010;50(2):143-55. https://doi.org/10.1016/j.ijmachtools.2009.11.008.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ff6a2927-7971-4c16-849d-f31a992faf30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.