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Abstract This paper presents the theoretical foundations of finding the inverse of a poly-

nomial modulo in the ring Z[x] based on the method of undetermined coeffi-

cients. The use of the latter makes it possible to significantly reduce the time

complexity of calculations avoiding the operation of finding the greatest com-

mon divisor. An example of calculating the inverse of a polynomial modulo

in the ring Z[x] based on the proposed approach is given. Analytical expres-

sions of the time complexities of the developed and classical methods depending

on the degrees of polynomials are built. The graphic dependence of the com-

plexity of performing the operation of finding the inverse of a polynomial in

the ring Z[x] is presented, which shows the advantages of the method based

on undetermined coefficients. It is found that the efficiency of the developed

method increases logarithmically with an increase in the degrees of polynomials.
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1. Introduction

One of the most important and at the same time complex operation in the theory of

algebra [1] and other mathematical applications [32] is the operation of finding the

multiplicative inverse of a polynomial modulo in the ring Z[x] [22,27]. The widespread

use of this operation can be explained by its application in modern polynomial sym-

metric and asymmetric cryptography [24, 43] (in particular, post-quantum [11]), for

solving problems of biometric identification of a person [3], in parallel and distributed

calculations based on the Residue Number System [21, 34] in the ring Z[x] [8, 36],

data coding based on polynomial modular arithmetic [6, 38], signal and image pro-

cessing [9, 17], for solving certain problems of linear programming [4] and in other

applications of applied and discrete mathematics [25,32,41].

The methods of finding the multiplicative inverse of a polynomial in the ring Z[x],

as well as in the ring of integers [18, 20, 39], are characterized by significant compu-

tational complexities. Therefore, the development of new methods and improvement

of the existing techniques for calculating the multiplicative inverse of a polynomial

modulo in the ring Z[x] is one of the most relevant problems.

One of the ways to solve this problem is the use of the method of undetermined

coefficients. Nowadays, it is being successfully used for solving algebraic equations by

factoring [10], decomposing a fraction, in which the numerator and denominator are

polynomials, into simple fractions [5], finding the most optimal possible partial solu-

tions to certain types of inhomogeneous ordinary differential equations [26], building

some recurrent sequences [40], transforming logical functions, in particular, in Zhe-

galkin’s algorithm [30], in integral calculus [29], in number methods [12].

According to the mentioned above, the purpose of our work is to develop a method

for finding the inverse of a polynomial modulo based on the method of undetermined

coefficients.

2. Related work

One of the most common methods for finding the multiplicative inverse of a polyno-

mial in the ring Z[x] is based on the extended Euclidean algorithm [7]. It should be

noted that its application requires performing a large number of arithmetic operations

on polynomials: division, finding residues [16], exponentiation [23], multiplication and

substitution [14,44]. At the same time this method is characterized by the lowest time

complexity compared to other known methods [19,33].

When applying the Euclidean algorithm, finding the inverse of a polynomial

is reduced to solving two problems: finding the greatest common divisor (GCD)

of polynomials [28] and solving Diophantine equations [42] based on the extended

Euclidean algorithm.

Let f(x) and g(x) be polynomials in the ring Z[x] and deg(f(x)) > deg(g(x)),

where the function deg denotes the degree of a polynomial. According to the main

theorem of algebra for polynomials [31], there is a pair q(x) and r(x) from a ring Z[x],
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for which f(x) = q(x)g(x)+r(x), 0 < deg r(x) < deg g(x). Then, under the condition

that g(x) is not divisible by r(x), for g(x) the following equality is performed:

g(x) = r(x)q1(x) + r1(x), 0 < deg r1(x) < deg r(x) (1)

Next, if r(x) is not divisible by r1(x), then:

r(x) = r1(x)q1(x) + r2(x), 0 < deg r2(x) < deg r2(x) (2)

This process is finite, that is, there exists such n, for which rn−1(x) will be

divisible by rn(x).

As a result, a system of equations is obtained, on the basis of which, the GCD

of two polynomials is found:

f(x) = q(x)g(x) + r(x), 0 < deg r(x) < deg g(x)

g(x) = r(x)q1(x) + r1(x), 0 < deg r1(x) < deg r(x)

r(x) = r1(x)q2(x) + r2(x), 0 < deg r2(x) < deg r1(x)

. . . . . . . . . . . . . . .

rn−2(x) = rn−1(x)qn−1(x) + rn(x), 0 < deg rn(x) < deg rn−1(x)

rn−1(x) = rn(x)qn(x)

(3)

Sequence (3) determines the steps of applying the Euclidean algorithm, according

to which the relationship of the GCD of polynomials comes true:

GCD(f(x), g(x)) = GCD(g(x), r(x)) = GCD(r(x), r1(x)) = . . .

= GCD(rn−1(x), rn(x)) = rn(x)
(4)

Calculation of the inverse of a polynomial in the ring Z[x] is reduced to solving the

Diophantine equation, since the two relatively prime polynomials f(x) and g(x) can

match the following polynomials l(x), s(x) ∈ Z[x] for which the equality f(x) · l(x) +
g(x) · s(x) = GCD(f(x), g(x))=w holds. If f(x) and g(x) are not relatively prime

polynomials, then according to the definition of the ring, the inverse of a polynomial

does not exist.

To simplify the procedure for finding the inverse of a polynomial, formula (4)

must be written as follows:

r(x) = f(x)− q(x)g(x)

r1(x) = g(x)− r(x)q1(x) = g(x)− (f(x)− q(x)g(x))q1(x) =

g(x)(1 + q(x)q1(x))− f(x)q1(x)

. . . . . . . . . . . . . . .

GCD(f(x), g(x)) = rn(x) = f(x)l(x) + g(x)s(x)

(5)

The notation GCD(f(x), g(x)) is called the Bezout relation for polynomials and

the polynomials l(x) and s(x) are Bezout’s polynomials. Then, f(x)−1 mod g(x) =

l(x) mod g(x).



242 Ihor Yakymenko et al.

In [45], the mathematical foundations of permutation polynomials, whose degrees

do not exceed 6, and their inverse polynomials in finite fields were presented. It was

noted that the results of the conducted research could be applied in cryptography,

coding theory and combinatorial design theory.

Work [35] is devoted to the problem of finding the inverse of a polynomial in

the Nth Degree Truncated Polynomial Ring. The method proposed in this work is

based on finding the inverse of the polynomial using an adaptive inverse algorithm

determined in the field of polynomials with binary and ternary coefficients. It was

also noted that this algorithm could be extended for polynomials with coefficients

of different fields, including Z(x). The efficiency of the algorithm was studied in

comparison with the inverse algorithm of Zhao and Su.

In [25], the method for inverse polynomial mappings was used to build the optimal

interpolation nodes on discrete intervals. It was shown that this method was highly

efficient for T-polynomials. In [13], it was noted that there was a length limitation for

the inverse polynomial depending on the value of the acceptable error. In addition,

five examples of polynomial inversion for solving physics and mathematics problems

were presented. In [37], an algorithm generating the inverse elements over finite

fields GF (3m) was presented. Calculations were based on multiplication, squaring

and cubing.

3. Method for calculating the inverse of

a polynomial modulo in the ring Z(x)

Let us find the inverse of a polynomial modulo m(x) = r−1(x) mod g(x) in the

ring of polynomials Z(x), where r(x) and g(x) are relatively prime polynomials

(GCD(r(x), g(x)) = w,w ∈ Z) and deg r(x) = n, deg g(x) = l for which the equal-

ity holds:

r(x) ·m(x) ≡ w mod g(x) (6)

At the same time, the degree of a polynomial degm(x) = l− 1, since the residue

modulo g(x) will be a polynomial of l − 1 degree. Let f(x) = r(x) · m(x) and

r(x) = Anx
n+An−1x

n−1+ . . .+A1x+A0, g(x) = Blx
l+Bl−1x

l−1+ . . .+B1x+B0,

then m(x) = Ckx
k +Ck−1x

k−1 + . . .+C1x+C0, where Ai, Bj , Ck ∈ Z, i = 0, . . . , n,

j = 0, . . . , l, k = 0, . . . , l − 1. Based on the method of undetermined coefficients,

equality (6) for polynomials r(x), g(x) and m(x) can be written as follows:

xn +An−1x
n−1 + . . .+A1x+A0) · (Ckx

k + Ck−1x
k−1 + . . .

+ C1x+ C0)) mod (Blx
l +Bl−1x

l−1 + . . .+B1x
1 +B0) = w

(7)

or

((Anx
n +An−1x

n−1 + . . .+A1x+A0) · (Ckx
k + Ck−1x

k−1 + . . .

+ C1x+ C0)) mod (Blx
l ++Bl−1x

l−1 + . . .+B1x
1 +B0)− w = 0

(8)
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First, we need to find the value f(x) = r(x) ·m(x):

f(x) = Anx
n · (Ckx

k + Ck−1x
k−1 + . . .

+ C1x+ C0) +An−1x
n−1(Ckx

k + Ck−1x
k−1 + . . .

+ C1x+ C0) + . . .++A1x(Ckx
k + Ck−1x

k−1 + . . .

+ C1x+ C0) +A0(Ckx
k + Ck−1x

k−1 + . . .+ C1x+ C0) =

AnCkx
n+k + (AnCk−1 +An−1Ck)x

n+k−1+

(AnCk−2 +An−1Ck−1 +An−2Ck)x
n+k−2 + . . .

+ (A0C1 +A1C0)x+A0C0

(9)

In expression (9), deg f(x) = n + k. Let us introduce the notations: Fn+k =

AnCk, Fn+k−1 = (AnCk−1 +An−1Ck), Fn+k−2 = (AnCk−2 +An−1Ck−1 +An−1Ck),

. . . , F1 = (A0C1 +A1C0),F0 = A0C0. Then, equality (9) can be written as follows:

f(x) = Fn+kx
n+k + Fn+k−1x

n+k−1 + . . .+ F1x+ F0 (10)

The problem of determining the coefficients Ck ∈ Z arises, for which condition (7)

is fulfilled. Therefore, it is necessary to find the residue on division f(x) by g(x):

(Fn+kx
n+k + Fn+k−1x

n+k−1 + . . .

+ F1x+ F0) mod (Blx
l +Bl−1x

l−1 + . . .+B1x
1 +B0)

(11)

Let us consider the polynomial:

f(x)− Fn+k

Bl
xn+k−lg(x) = f1(x), Bl ̸= 0 (12)

Given (10), expression (12) can be written as follows:

(Fn+kx
n+k + Fn+k−1x

n+k−1 + . . .

+ F1x+ F0)−
Fn+k

Bl
xn+k−l(Blx

l +Bl−1x
l−1 + . . .

+ B1x
1 +B0) = f1(x)

(13)

Moreover, deg f(x) > deg f1(x) and the coefficient of the highest degree is deter-

mined according to the relation: f1(x) = (Fn+k−1·Bl−Fn+k·Bl−1

B2
l

) = F1nk, deg f1(x) =

n+ k − 1 = n1.

If deg f1(x) > deg g(x), then the equality can be written as follows:

f1(x)− (
Fn+k−1 ·Bl − Fn+k ·Bl−1

B2
l

)xn+k−l−1g(x) =

f1(x)− F1nkx
n+k−l−1g(x) = f2(x)

(14)
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where deg f1(x) > deg f2(x), coefficient f2(x) = F2n and deg f2(x) = n2. It is not

difficult to make sure thatdeg f2(x) > deg g(x), that is n2 ≥ l. Therefore, you can

continue this procedure and write the following equality:

f2(x)−
F 2nk

Bl
xn2−lg(x) = f3(x) (15)

where the condition deg f2(x) > deg f3(x) is fulfilled for degrees of polynomials, the

coefficient of the maximum degree of the polynomial f3(x) is F3nk and deg f3(x) = n3.

If n3 ≥ l, then the following equality is obtained in a similar way:

f3(x)−
F 3nk

Bl
xn3−lg(x) = f4(x) (16)

where deg f2(x) > deg f3(x). According to the above notations, f3(x) = F3nk and

deg f3(x) = n3. It should be noted that the degrees of the created polynomials f1(x),

f2(x), f3(x), . . . decrease (n1 > n2 > n3 > . . .), therefore, after a finite number of

steps s the following polynomial is obtained:

fs(x)−
F snk

Bl
xns−lg(x) = fs+1(x) (17)

The degrees of polynomials satisfy the inequality deg fs(x) > deg fs+1(x). Ac-

cording to the above relationships, the value of the residue is as follows: (Fn+kx
n+k+

Fn+k−1x
n+k−1 + . . .+ F1x+ F0) mod (Blx

l +Bl−1x
l−1 +B1x

1 +B0) = fs+1(x).

This leads to the following relationship adding all the Equations (14)–(17):

f(x)− Fn+k

Bl
xn+k−lg(x) + f1(x) −

F 1nk

Bl
xn1−lg(x) + f2(x)−

F2nk

Bl
xn2−lg(x) + f3(x) −

F3nk

Bl
xn3−lg(x) + . . .+ fs(x)−

F snk

Bl
xns−lg(x) =

(f1(x) + f2(x) + f3(x) + . . .+ fs(x)) ⇒

f(x)− (
Fn+k

Bl
xn+k−l +

F1nk

Bl
xn1−l+

F2nk

Bl
xn2−l +

F3nk

Bl
xn3−l + . . .+

F snk

Bl
xns−l) = fs+1(x)

(18)

As a result of transformations (18), a polynomial fs+1(x) = Ls−1x
s−1 +

Ls−2x
s−2 + . . . + L1x + L0 of deg fs+1(x) = s − 1 order is obtained. Taking into

account condition (7), the method of undetermined coefficients for calculating values

Ck ∈ Z, where k = 1, . . . , l − 1, leads to a system of s equations and s unknowns,

which must be found:

Ls−1 = 0, Ls−2 = 0, . . . , L1 = 0, L0 = w (19)
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According to these equations, the value Ck ∈ Z is calculated. The scheme of find-

ing the inverse of a polynomial in a ring Z(x) based on the method of undetermined

coefficients is presented in Figure 1.

Figure 1. The scheme of finding the inverse of a polynomial in the polynomial ring

4. An example of the application of the developed method

Let the polynomials be r(x) = x2 + 3x + 1 and g(x) = x3 + 3x2 + 2x + 1. It is

necessary to find m(x) = r(x)−1 mod g(x) = (x2+3x+1)−1 mod (x3+3x2+2x+1).

According to the theoretical provisions presented above, the polynomial m(x) is as
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follows: m(x) = Ax2 + Bx+ C. Taking into account (9), it is possible to obtain the

product: r(x) ·m(x) = (x2 +3x+1) · (Ax2 +Bx+C) = Ax4 +3Ax3 +Ax2 +Bx3 +

3Bx2+Bx+Cx2+3Cx+C= Ax4+(3A+B)x3+(A+3B+C)x2+(B+3C)x+C. Next,

using the relationships (14)–(17), the residue of the division r(x) ·m(x) mod g(x) =

(Ax4 + (3A+B)x3 + (A+ 3B + C)x2 + (B + 3C)x+ C) mod (x3 + 3x2 + 2x+ 1) is

obtained: Ax4+(3A+B)x3+(2A+3B)x2+(A+2B)x+B = (Ax+B) · (x3+3x2+

2x+ 1) + ((−A+ C)x2 + (−A−B + 3C)x+ C −B).

As a result, a polynomial f3(x) = (−A+C)x2+(−A−B+3C)x+C−B, whose

degree is less than deg g(x ), is obtained as a residue. To simplify the calculations,

let f3(x) = w = 1, that, (−A + C)x2 + (−A − B + 3C)x + C − B = 1. Then

condition (19) for finding the unknown coefficients A, B and C leads to the following

system of equations: 
C −A = 0

3C −A−B = 0

C −B = 1

(20)

Its solution determines the coefficients: A = −1, B = −2, C = −1.

Thus, the value of the inverse of a polynomial modulo in the ring Z[x] is calculated

as follows: m(x) = r(x)−1 mod g(x) = (x2 + 3x + 1)−1 mod (x3 + 3x2 + 2x + 1) =

−x2 − 2x− 1.

5. Estimating the computational complexity of

the proposed algorithm

for calculating the inverse of a polynomial in the ring Z[X]

When building analytical expressions for estimating the time complexity of calcu-

lating the inverse in a ring of polynomials according to the classical and proposed

methods, it is necessary to determine the complexity of the most time-consuming

operations, namely:

1. Product of two polynomials.

2. The residue of two polynomials.

At the first step of the implementation of the proposed method, according to (9),

the most computationally complex operation is the multiplication of two polynomials

(Anx
n +An−1x

n−1 + . . .+A1x+A0) · (Ckx
k +Ck−1x

k−1 + . . .+C1x+C0). Its time

complexity for polynomials of n degree was studied in [15] and consists of O(n log n)

bit operations, where the logarithm is taken to the base 2. Given the complexity of

finding residues [15], the general estimate is O(2n log n) of bit operations.

A well-known method of finding the inverse of a polynomial in a polynomial

ring is based on the use of the Euclidean algorithm and its consequences. In [2], it

was noted that the time complexity of finding the GCD (p(x),q(x)) over the field

Z[X] according to the Euclidean algorithm has an upper limit O(n log2 n), where
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n = max{deg(p),deg(q)}. In addition, the best known asymptotic estimate of the

Euclidean inverse algorithm is equal to O(n log n log log n) ≈ O(n log n) [2].

Table 1 shows the basic operations and time complexities when using the

proposed method for finding the inverse of a polynomial based on the method

of undetermined coefficients and the classical method based on the extended Eu-

clidean algorithm.

Table 1
Basic operations and time complexities of the proposed and classical methods

for finding the inverse of a polynomial

Basic operations

Time complexity

of the classical

method, O(n)

Time complexity

of the proposed

method, O(n)

Computing the GCD (a, b) over the

field by the Euclidean algorithm

O(n log2 n), where n =

max{deg(p),deg(q)} –

The extended Euclidean algorithm
O(n logn log log n) ≈

O(n logn)
–

The product of two polynomials – O(n logn)

Finding the residue of two

polynomials
– O(n logn)

Taking into account the time complexities of the basic operations, the overall

time complexity of the classical method of finding the inverse in the polynomial ring

is O1(n log n · (1 + log n)). Since, using the proposed method you do not need to

find the GCD of polynomials, then the time complexity will decrease: O2(2n log n).

Figure 2 shows the graphs that characterize the dependences of the time complexities

of the proposed and classical methods for finding the inverse of a polynomial in the

polynomial ring on the polynomial degrees.

Figure 2. Time complexities of the classical O1(n) and proposed O2(n) methods
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As a result of the numerical experiment, it was found that the complexity in-

creases significantly with an increase in the degrees of polynomials.

The efficiency of the developed method in comparison with the classical one is

defined as the relation of the respective complexities:

E(n) =
O1(n)

O2(n)
=

n log n · (1 + log n)

2n log n
=

1 + log n

2
(21)

Due to expression (21), the found efficiency increases logarithmically with an

increase in degrees of polynomials.

6. Conclusions

For the first time, an algorithm for finding the inverse of a polynomial in the ring

Z[x] based on the method of undetermined coefficients is proposed. A mathematical

description of the developed method is presented and an example of its application is

given. Analytical expressions of time complexities are built depending on the order

of polynomials for the proposed method and the known one based on the Euclidean

algorithm and its consequences. As a result of the conducted research, the higher

efficiency of the algorithm based on the method of undetermined coefficients without

finding the GCD of polynomials, has been proven. One of the main advantages

of the proposed approach is the reduction of the time complexity from O1(n log n·
(1 + log n)) to O2(2n log n) compared to the known method. Graphic dependences

of time complexities are presented. It is found that the efficiency of the proposed

method increases logarithmically with an increase in the degrees of polynomials.

Further research in this field can be devoted to the development of the method

for a polynomial recovery from its residues (Chinese Remainder Theorem for Polyno-

mials), development of the theoretical foundations of the Residue Number System in

the ring Z[x], its perfect and modified perfect forms, as well as the development of

new polynomial encryption algorithms with increased resistance to cryptanalysis. In

addition, we are currently working on the software and hardware implementation of

the proposed algorithm, which will make it possible to detect limitations of the usage

of some polynomial classes in the method of undetermined coefficients.
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