Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 44, no. 3 | 513--520
Tytuł artykułu

Lead II electrocardiograph-derived entropy index for autonomic function assessment in type 2 diabetes mellitus

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to introduce and evaluate the baroreflex entropy index (BEI), a novel tool derived from standard lead II electrocardiograph (EKG) for autonomic function (AF) assessment in type 2 diabetes mellitus (T2DM). Researchers with distinct roles (analysis and data preparation) analyzed anonymized EKG data from healthy controls and two patient groups with T2DM (well controlled and poorly controlled). BEI was compared between groups, and correlations with glycemic markers (HbA1c, fasting glucose) were investigated. Logistic regression was used to assess the association between BEI and T2DM risk. BEI showed good repeatability and differentiation between groups. Notably, it required only single-lead EKG. BEI was inversely correlated with glycemic markers, suggesting improved baroreflex regulation with better glycemic control. BEI also out-performed small-scale multiscale entropy in group discrimination. Logistic regression identified BEI as a protective factor for T2DM. BEI represents a promising tool for monitoring AF, assessing glycemic control, and potentially stratifying T2DM risk. Further validation in larger longitudinal studies and an exploration of the applicability of BEI to other diseases are warranted.
Wydawca

Rocznik
Strony
513--520
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, Ningxia 750021, China, ysl029@163.com
  • Microelectronics and Solid-State Electronics Device Research Center, North Minzu University, Yinchuan, Ningxia 750021, China
autor
  • School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, Ningxia 750021, China, liao.xw@foxmail.com
autor
  • School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, Ningxia 750021, China, 13970916721@163.com
  • Taichung Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation, Taichung 42743, Taiwan, cjjwei1206@gmail.com
  • School of Electrical and Information Engineering, North Minzu University, No. 204 North Wenchang Street, Yinchuan, Ningxia 750021, China, hsientsaiwu@gmail.com
  • Department of Electrical Engineering, Dong Hwa University, No. 1, Section 2, Da Hsueh Rd., Hualien 97401, Taiwan
Bibliografia
  • [1] DF Diabetes Atlas 2022 Reports. Available online: https://diabetesatlas.org/atlas-reports/ (accessed on 20 Mar. 2024).
  • [2] American Diabetes Association. Standards of medical care in diabetes. Diabetes Care 2023;46(Supplement 1):S1-193.
  • [3] Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, et al. Diabetic neuropathy. Nat Rev Dis Primers 2019;5(1):41. https://doi.org/10.1038/s41572-019-0092-1.
  • [4] Whitmer RA, Karter AJ, Yaffe K, Quesenberry Jr CP, Selby JV. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. J Am Med Assoc 2009;301(15):1565-72. https://doi.org/10.1001/jama.2009.460.
  • [5] Tsao CW, Aday AW, Almarzooq ZI, Anderson CA, Arora P, Avery CL, et al. Heart Disease and Stroke Statistics-2023 Update: a report from the American Heart Association [published correction appears in Circulation. 2023 Feb 21;147(8): e622] [published correction appears in Circulation. 2023 Jul 25;148(4):e4]. Circulation 2023;147(8):e93-621. https://doi.org/10.1161/CIR.000000000000112.
  • [6] Schmidt MI, Duncan BB, Bang H, Pankow JS, Ballantyne CM, Golden SH, et al. Identifying individuals at high risk for diabetes: the Atherosclerosis Risk in Communities study. Diabetes Care 2005;28(8):2013-208. https://doi.org/10.2337/diacare.28.8.2013.
  • [7] Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics. CA Cancer J Clin 2023; 73(1):17-48. https://doi.org/10.3322/caac.21442.
  • [8] Sharif K, Watad A, Bragazzi NL, Lichtbroun M, Amital H, Shoenfeld Y. Physical activity and autoimmune diseases: get moving and manage the disease. Autoimmun Rev 2018;17(1):53-72. https://doi.org/10.1016/j. autrev.2017.11.010.
  • [9] Gerritsen J, Dekker JM, TenVoorde BJ, Kostense PJ, Heine RJ, Bouter LM, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 2001;24(10):1793-2178. https://doi.org/10.2337/diacare.24.10.1793.
  • [10] Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al. Heart Disease and Stroke Statistics-2019 Update: a report from the American Heart Association [published correction appears in Circulation. 2020 Jan 14;141(2):e33]. Circulation 2019;139(10):e56-528. https://doi.org/10.1161/CIR.000000000000065.
  • [11] van’t Hof AW, Liem A, de Boer MJ, Zijlstra F. Clinical value of 12-lead electrocardiogram after successful reperfusion therapy for acute myocardial infarction. Zwolle Myocardial infarction Study Group. Lancet 1997;350(9078): 615-9. https://doi.org/10.1016/S0140-6736(96)07120-6.
  • [12] Nevzorov R, Daum A, Jafari J, Yosefy C, Gallego-Colon E. Impact of the change in ESC guidelines on clinical characteristics and outcomes of cardiogenic shock patients receiving IABP therapy. Cardiovasc Revasc Med 2020;21(1):46-51. https://doi.org/10.1016/j.carrev.2019.09.014.
  • [13] Bikdeli B, Khairani CD, Krishnathasan D, Bejjani A, Armero A, Tristani A, et al. Major cardiovascular events after COVID-19, event rates post-vaccination, antiviral or anti-inflammatory therapy, and temporal trends: rationale and methodology of the CORONA-VTE-Network study. Thromb Res 2023;228:94-104. https://doi.org/10.1016/j.thromres.2023.05.019.
  • [14] Corrado D, Pelliccia A, Heidbuchel H, Sharma S, Link M, Basso C, De Angelis G, Papadakis M, Olivotto I, et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete [published correction appears in Eur Heart J. 2010 Feb;31(3):379]. Eur Heart J 2010;31(2):243-59. https://doi.org/10.1093/eurheartj/ehp473.
  • [15] Finocchiaro G, Merlo M, Sheikh N, De Angelis G, Papadakis M, Olivotto I, et al. The electrocardiogram in the diagnosis and management of patients with dilated cardiomyopathy. Eur J Heart Fail 2020;22(7):1097-107. https://doi.org/10.1002/ejhf.1815.
  • [16] Faruk N, Abdulkarim A, Emmanuel I, Folawiyo YY, Adewole KS, Mojeed HA, et al. A comprehensive survey on low-cost ECG acquisition systems: advances on design specifications, challenges and future direction. Biocybernetics Biomed Eng 2021;41(2):474-502. https://doi.org/10.1016/j.bbe.2021.02.007.
  • [17] Ogata H, Horie M, Kayaba M, Tanaka Y, Ando A, Park I, et al. Skipping breakfast for 6 days delayed the circadian rhythm of the body temperature without altering clock gene expression in human leukocytes. Nutrients 2020;12(9):2797. https://doi.org/10.3390/nu12092797.
  • [18] Van Der Ende MY, Hendriks T, Van Veldhuisen DJ, Snieder H, Verweij N, Van Der Harst P. Causal pathways from blood pressure to larger Qrs amplitudes a mendelian randomization study [published correction appears in Sci Rep. 2018 Jul 3;8(1):10290]. Sci Rep 2018;8(1):5817. https://doi.org/10.1038/s41598-018-24002-0.
  • [19] Deal JA. Epidemiologic studies of anemia and autonomic dysfunction as potential physiologic risk factors for cognitive decline in community-dwelling older adults. Dissertations & Theses - Gradworks; 2013.
  • [20] Pham T, Lau ZJ, Chen SHA, Makowski D. Heart rate variability in psychology: a review of HRV indices and an analysis tutorial. Sensors (Basel) 2021;21(12):3998. https://doi.org/10.3390/s21123998.
  • [21] Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circulat Physiol 2000;278(6): H2039-49. https://doi.org/10.1152/ajpheart.2000.278.6.H2039.
  • [22] Malpas SC. Sympathetic nervous system overactivity and its role in the development of cardiovascular disease. Physiol Rev 2010;90(2):513-57. https://doi.org/10.1152/physrev.00007.2009.
  • [23] Honzíková N, Fiser B. Baroreflex sensitivity and essential hypertension in adolescents. Physiol Res 2009;58(5):605-12.
  • [24] Bernardi L, Porta C, Spicuzza L, Bellwon J, Spadacini G, Frey AW, et al. Slow breathing increases arterial baroreflex sensitivity in patients with chronic heart failure. Circulation 2002;105(2):143-215. https://doi.org/10.1161/hc0202.103311.
  • [25] Agelink MW, Malessa R, Baumann B, Majewski T, Akila F, Zeit T, et al. Standardized tests of heart rate variability: normal ranges obtained from 309 healthy humans, and effects of age, gender, and heart rate. Clin Auton Res 2001;11(2):99-108. https://doi.org/10.1007/BF02322053.
  • [26] Padley JR, Overstreet DH, Pilowsky PM, Goodchild AK. Impaired cardiac and sympathetic autonomic control in rats differing in acetylcholine receptor sensitivity. Am J Physiol Heart Circulat Physiol 2005;289(5):H1985-92. https://doi.org/10.1152/ajpheart.00430.2005.
  • [27] Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys 2005;71(2 Pt 1):021906. https://doi.org/10.1103/PhysRevE.71.021906.
  • [28] Pan WY, Su MC, Wu HT, Su TJ, Lin MC, Sun CK. Multiscale entropic assessment of autonomic dysfunction in patients with obstructive sleep apnea and therapeutic impact of continuous positive airway pressure treatment. Sleep Med 2016;20:12-7. https://doi.org/10.1016/j.sleep.2015.11.021.
  • [29] Wei HC, Xiao MX, Ta N, Wu HT, Sun CK. Assessment of diabetic autonomic nervous dysfunction with a novel percussion entropy approach. CompLex 2019;2019 (6469853):1-11. https://doi.org/10.1155/2019/6469853.
  • [30] Xiao MX, Lu CH, Ta N, Jiang WW, Tang XJ, Wu HT. Application of a speedy modified entropy method in assessing the complexity of baroreflex sensitivity for age-controlled healthy and diabetic subjects. Entropy 2019;21(9):894. https://doi.org/10.3390/e21090894.
  • [31] Jamin A, Humeau-Heurtier A. (Multiscale) cross-entropy methods: a review. Entropy (Basel) 2019;22(1):45. https://doi.org/10.3390/e22010045.
  • [32] Wei HC, Ta N, Hu WR, Wang SY, Xiao MX, Tang XJ, et al. Percussion entropy analysis of synchronized ECG and PPG signals as a prognostic indicator for future peripheral neuropathy in type 2 diabetic subjects. Diagnostics (Basel) 2020;10(1): 32. https://doi.org/10.3390/diagnostics10010032.
  • [33] Wei HC, Hu WR, Ta N, Xiao MX, Tang XJ, Wu HT. Prognosis of diabetic peripheral neuropathy via decomposed digital volume pulse from the fingertip. Entropy (Basel) 2020;22(7):754. https://doi.org/10.3390/e22070754.
  • [34] Wei HC, Ta N, Hu WR, Xiao MX, Tang XJ, Haryadi B, et al. Digital volume pulse measured at the fingertip as an indicator of diabetic peripheral neuropathy in the aged and diabetic. Entropy 2019;21(12):1229. https://doi.org/10.3390/e21121229.
  • [35] Xiao MX, Lu CH, Na Ta, Wei HC, Haryadi B, Wu HT. Machine learning prediction of future peripheral neuropathy in type 2 diabetics with percussion entropy and body mass indices. Biocybernetics Biomed Eng 2021;41(3):1140-2119. https://doi.org/10.1016/j.bbe.2021.08.001.
  • [36] Wu HT. Multiscale entropy with electrocardiograph, electromyography, electroencephalography, and photoplethysmography signals in healthcare: a twelve-year systematic review. Biomed Signal Process Control 2024;93:106124. https://doi.org/10.1016/j.bspc.2024.106124.
  • [37] Chen W, Tamura T, editors. Seamless healthcare monitoring: advancements in wearable, attachable, and invisible devices. 1st ed. Cham, Switzerland: Springer; 2018.
  • [38] Zaprutko T, Zaprutko J, Sprawka J, Pogodzińska M, Michalak M, Paczkowska A, et al. The comparison of Kardia Mobile and Hartmann Veroval 2 in 1 in detecting first diagnosed atrial fibrillation. Cardiol J 2023;30(5):762-70. https://doi.org/10.5603/CJ.a2021.0083.
  • [39] John APP, Udupa K, Avangapur S, Sujan MU, Inbaraj G, Vasuki PP, et al. Cardiac autonomic dysfunctions in type 2 diabetes mellitus: an investigative study with heart rate variability measures. Am J Cardiovasc Dis 2022;12(4):224-32.
  • [40] Papaioannou V, Giannakou M, Maglaveras N, Sofianos E, Giala M. Investigation of heart rate and blood pressure variability, baroreflex sensitivity, and approximate entropy in acute brain injury patients. J Crit Care 2008;23(3):380-436. https://doi.org/10.1016/j.jcrc.2007.04.006.
  • [41] Aktas G. Association between the prognostic nutritional index and chronic microvascular complications in patients with type 2 diabetes mellitus. J Clin Med 2023;12(18):5952. https://doi.org/10.3390/jcm12185952.
  • [42] Basaran E, Aktas G. The relationship of vitamin D levels with hemogram indices and metabolic parameters in patients with type 2 diabetes mellitus. AIMS Med Sci 2024;11(1):47-57. https://doi.org/10.3934/medsci.2024004.
  • [43] Sincer I, Gunes Y, Mansiroglu AK, Aktas G. Differential value of eosinophil count in acute coronary syndrome among elderly patients. Aging Male 2020;23(5):958-61. https://doi.org/10.1080/13685538.2019.1643310.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ff4be879-5a67-4b53-8dd4-85684940cb3d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.