Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 25, nr 8 | 237--252
Tytuł artykułu

Treatment of Domestic Wastewater Using Free Floating Constructed Wetlands Assisted by Eichhornia crassipes and Pistia stratiotes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Floating phytoremediation offers a feasible, ecofriendly, and economically viable method for treating wastewater. The objective of this study was to assess the effectiveness of Eichhornia crassipes and Pistia stratiotes in treating domestic wastewater with varying initial strength at different hydraulic retention time (HRT). This was to find out a best treatment combination of macrophyte, wastewater strength and HRT by optimizing those parameters. The growth parameters of the plants were assessed and linked to the removal of contaminants. The wastewater phytoremediation by E. crassipes and P. stratiotes conducted for twenty-two days in a green house. Result showed that Eichhornia crassipes able to treat 50% strength of wastewater (50 WH) efficiently with removal of ammonia by 97.4%, phosphate by 68.5%, and COD by 54.0%, respectively, at the HRT of three days. The corresponding initial concentrations of ammonia, phosphate, and COD were likely to be 6.62 mg/L, 2.54 mg/L, and 37 mg/L, respectively. The 50WH experimental units showed the lowest relative growth rate (RGR). The results proved the higher efficiency of E. crassipes in treating the domestic wastewater.
Wydawca

Rocznik
Strony
237--252
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Biosystems Technology, Faculty of Technology, University of Jaffna, Sri Lanka
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia, hassimi@ukm.edu.my
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
  • Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Bibliografia
  • 1. Adhikari, S., Anuragi, H., Chandra, K., Tarte, S.H., Dhaka, S.R., Jatav, H.S., Hingonia, K. 2022. Molecular basis of plant nutrient use efficiency - concepts and challenges for its improvement, in: Sustainable Plant Nutrition: Molecular Interventions and Advancements for Crop Improvement. https://doi.org/10.1016/B978-0-443-18675-2.00001-8
  • 2. Akinbile, C.O., Yusoff, M.S. 2012. Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Int. J. Phytoremediation.https://doi.org/10.1080/15226514.2011.587482
  • 3. Ansari, A.J., Hai, F.I., Price, W.E., Drewes, J.E., Nghiem, L.D. 2017. Forward osmosis as a platform for resource recovery from municipal wastewater - A critical assessment of the literature. J. Memb. Sci. https://doi.org/10.1016/j.memsci.2017.01.054
  • 4. Ariffin, F.D., Halim, A.A., Hanafiah, M.M., Ramlee, N.A. 2019. Phytoremediation capability by azolla pinnata in aquaculture wastewater treatment. Sains Malaysiana. https://doi.org/10.17576/jsm-2019-4802-03
  • 5. Bashan, Y. and De-Bashan, L.E. 2005. Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth : a critical examination. Soil Biology & Biochemistry, 37, 1795–1804.
  • 6. Buhari, J., Hasan, H.A., Kurniawan, S.B., Abdullah, S.R.S., Othman, A.R. 2023. Future and challenges of co-biofilm treatment on ammonia and Bisphenol A removal from wastewater. J. Water Process Eng. https://doi.org/10.1016/j.jwpe.2023.103969
  • 7. Cao, X.C., Wu, L.H., Ma, Q.X., Jin, Q.Y. 2015. Advances in studies of absorption and utilization of amino acids by plants: A review. Chinese J. Appl. Ecol.
  • 8. Cheng, H., Zhu, Q., Xing, Z. 2019. Adsorption of ammonia nitrogen in low temperature domestic wastewater by modification bentonite. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2019.06.079
  • 9. Correa dos Santos, N.M., Monteiro, P.G., Ferreira, E.A., Alencar, B.T.B., Cabral, C.M., dos Santos, J.B. 2022. Use of Eichhornia crassipes and Pistia stratiotes for environmental services: Decontamination of aquatic environments with atrazine residues. Aquat. Bot. https://doi.org/10.1016/j.aquabot.2021.103470
  • 10. Ezaz, Z., Azhar, R., Rana, A., Ashraf, S., Farid, M., Mansha, A., Naqvi, S.A.R., Zahoor, A.F., Rasool, N. 2020. Current trends of phytoremediation in wetlands: mechanisms and applications. Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II: Mechanisms of Adaptation and Stress Amelioration, 747–765.
  • 11. Grant, B.R., Beevers, H. 1964. Absorption of sugars by plant tissues. Plant Physiol. https://doi.org/10.1104/pp.39.1.78
  • 12. Wibowo, G.Y., Nugraha, T.A., Rohman, A. 2023. Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environ. Nanotechnology, Monit. Manag. https://doi.org/10.1016/j.enmm.2023.100781
  • 13. Hachiya, T. and Sakakibara, H. 2017. Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 68, 2501–2512.
  • 14. Hawkesford, M.J., Kopriva, S., De Kok, L.J. 2016. Nutrient use efficiency in plants.
  • 15. Heard, T.A., Winterton, S.L. 2000. Interactions between nutrient status and weevil herbivory in the biological control of water hyacinth. J. Appl. Ecol. https://doi.org/10.1046/j.1365-2664.2000.00480.x
  • 16. Imron, M.F., Firdaus, A.A.F., Flowerainsyah, Z.O., Rosyidah, D., Fitriani, N., Kurniawan, S.B., Abdullah, S.R.S., Hasan, H.A., Wibowo, Y.G. 2023. Phytotechnology for domestic wastewater treatment: Performance of Pistia stratiotes in eradicating pollutants and future prospects. J. Water Process Eng. 51, 103429. https://doi.org/10.1016/j.jwpe.2022.103429
  • 17. Kartohardjono, S., Elkardiana, K., Sangaji, A., Ramadhan, A., Fermi, M. 2015. The removal of dissolved ammonia from wastewater through a polypropylene hollow fiber membrane contactor. International Journal Of Technology, 6.
  • 18. Khandare, R.V. and Govindwar, S.P. 2015. Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnology Advances, 33, 1697–1714.
  • 19. Le, P.T.T. and Boyd, C. 2012. Comparison of phenate and salicylate methods for determination of total ammonia nitrogen in freshwater and saline water. Journal Of The World Aquaculture Society, 43, 885–889.
  • 20. Li, J., Yang, X., Wang, Z., Shan, Y., Zheng, Z. 2015. Comparison of four aquatic plant treatment systems for nutrient removal from eutrophied water. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2014.11.053
  • 21. Lowry, C.J., Smith, R.G. 2018. Weed control through crop plant manipulations, in: NonChemical Weed Control. https://doi.org/10.1016/ B978-0-12-809881-3.00005-X
  • 22. Malcolm J. Hawkesford, S.K., Kok, L.J. De. 2014. Nutrient use efficiency in plants. Springer Cham. https:// doi.org/https://doi.org/10.1007/978-3-319-10635-9
  • 23. Metcalf, E., Eddy, H. 2003. Wastewater engineering: treatment and reuse, Wastewater Engineering, Treatment, Disposal and Reuse. Techobanoglous G, Burton FL, Stensel HD (eds). Tata McGraw-Hill Publishing Company Limited, 4th edition. New Delhi, India.
  • 24. Mirzaee, M.M., ZakeriNia, M., Farasati, M. 2021. The effects of phytoremediation of treated urban wastewater on the discharge of surface and subsurface drippers (Case study: Gorgan wastewater treatment plant in northern Iran). Clean. Eng. Technol. https://doi.org/10.1016/j.clet.2021.100210
  • 25. Mukherjee, B., Majumdar, M., Gangopadhyay, A., Chakraborty, S., Chaterjee, D. 2015. Phytoremediation of parboiled rice mill wastewater using water lettuce (Pistia Stratiotes). Int. J. Phytoremediation. https://doi.org/10.1080/15226514.2014.950415
  • 26. Mustafa, H.M., Hayder, G. 2021. Cultivation of S. molesta plants for phytoremediation of secondary treated domestic wastewater. Ain Shams Eng. J. https://doi.org/10.1016/j.asej.2020.11.028
  • 27. Ng, Y.S., Chan, D.J.C. 2017. Wastewater phytoremediation by Salvinia molesta. J. Water Process Eng. https://doi.org/10.1016/j.jwpe.2016.08.006
  • 28. Nizam, N.U.M., Hanafiah, M.M., Noor, I.M., Karim, H.I.A. 2020. Efficiency of five selected aquatic plants in phytoremediation of aquaculture wastewater. Appl. Sci. https://doi.org/10.3390/APP10082712
  • 29. Othman, M.F., Hasan, H.A., Muhamad, M.H., Babaqi, B.S. 2023. Biopolishing of domestic wastewater using polyvinyl alcohol – supported biofilm of bacterial strain bacillus velezensis isolate JB7. J. Ecol. Eng. https://doi.org/10.12911/22998993/165780
  • 30. Prabakaran, K., Li, J., Anandkumar, A., Leng, Z., Zou, C.B., Du, D. 2019. Managing environmental contamination through phytoremediation by invasive plants: A review. Ecol. Eng. https://doi.org/10.1016/j.ecoleng.2019.07.002
  • 31. Qin, H., Diao, M., Zhang, Z., Visser, P.M., Zhang, Y., Wang, Y., Yan, S. 2020. Responses of phytoremediation in urban wastewater with water hyacinths to extreme precipitation. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2020.110948
  • 32. Radzali, M.H., Kamal, N.A.M., Diah, N.M. 2016. Measuring leaf area using otsu segmentation method (LAMOS). Indian J. Sci. Technol. https://doi.org/10.17485/ijst/2016/v9i48/109307
  • 33. Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S.E., Md Din, M.F., Taib, S.M., Sabbagh, F., Sairan, F.M. 2015. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2015.08.018
  • 34. Rice, E.W., Bridgewater, L., Association, A.P.H. 2012. Standard methods for the examination of water and wastewater, American public health association Washington, DC.
  • 35. Said, N.S.M., Abdullah, S.R.S., Ismail, N. Izzati, Hasan, H.A., Othman, A.R. 2020. Phytoremediation of real coffee industry effluent through a continuous two-stage constructed wetland system. Environ. Technol. Innov. https://doi.org/10.1016/j.eti.2019.100502
  • 36. Selvaraj, D., Velvizhi, G. 2021. Sustainable ecological engineering systems for the treatment of domestic wastewater using emerging, floating and submerged macrophytes. J. Environ. Manage. https://doi.org/10.1016/j.jenvman.2021.112253
  • 37. Seroja, R., Effendi, H., Hariyadi, S. 2018. Tofu wastewater treatment using vetiver grass (Vetiveria zizanioides) and zeliac. Appl. Water Sci. https://doi.org/10.1007/s13201-018-0640-y
  • 38. Shah, M., Hashmi, H.N., Ali, A., Ghumman, A.R. 2014. Performance assessment of aquatic macrophytes for treatment of municipal wastewater. J. Environ. Heal. Sci. Eng. https://doi.org/10.1186/2052-336X-12-106
  • 39. Van Nes, E.H., Scheffer, M., Van den Berg, M.S., Coops, H. 2002. Aquatic macrophytes: Restore, eradicate or is there a compromise? Aquat. Bot. https://doi.org/10.1016/S0304-3770(01)00212-1
  • 40. Victor, K.K., Séka, Y., Norbert, K.K., Sanogo, T.A., Celestin, A.B. 2016. Phytoremediation of wastewater toxicity using water hyacinth (Eichhornia crassipes) and water lettuce (Pistia stratiotes). Int. J. Phytoremediation. https://doi.org/10.1080/15226514.2016.1183567
  • 41. Vymazal, J. 2019. Constructed wetlands for wastewater treatment, in: encyclopedia of ecology: 1–4, Second Edition. https://doi.org/10.1016/B978-0-12-409548-9.11238-2
  • 42. Wang, J. and Chu, L. 2016. Biological nitrate removal from water and wastewater by solid-phase denitrification process. Biotechnology advances, 34, 1103–1112.
  • 43. Werkneh, A.A. 2024. Decentralized constructed wetlands for domestic wastewater treatment in developing countries: Field-scale case studies, overall performance and removal mechanisms. J. Water Process Eng. 57. https://doi.org/10.1016/j.jwpe.2023.104710
  • 44. Wickramasinghe, S., Jayawardana, C.K. 2018. Potential of aquatic macrophytes Eichhornia crassipes, Pistia stratiotes and Salvinia molesta in phytoremediation of textile wastewater. J. Water Secur. https://doi.org/10.15544/jws.2018.001
  • 45. Zainuddin, N.A., Md Din, M.F., Nuid, M., Abdul Halim, K., Abdul Salim, N.A., Elias, S.H., Mat Lazim, Z. 2022. The phytoremediation using water hyacinth and water lettuce : correlation between sugar content, biomass growth rate, and nutrients. J. Kejuruteraan 34, 915–924.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ff38451e-fe96-4d09-8e78-87436165b06a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.