Czasopismo
2016
|
Vol. 36, Fasc. 1
|
21--33
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We show first that there are intrinsic relationships among different conditions, old and recent, which lead to some general statements in both the Stieltjes and the Hamburger moment problems. Then we describe checkable conditions and prove new results about the moment (in)determinacy for products of independent and non-identically distributed random variables. We treat all three cases: when the random variables are nonnegative (Stieltjes case), when they take values in the whole real line (Hamburger case), and the mixed case. As an illustration we characterize the moment determinacy of products of random variables whose distributions are generalized gamma or double generalized gamma all with distinct shape parameters. Among other corollaries, the product of two independent random variables, one exponential and one inverse Gaussian, is moment determinate, while the product is moment indeterminate for the cases: one exponential and one normal, one chi-square and one normal, and one inverse Gaussian and one normal.
Czasopismo
Rocznik
Tom
Strony
21--33
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan, ROC, gdlin@stat.sinica.edu.tw
autor
- School of Mathematics & Statistics, Newcastle University, Newcastle upon Tyne NE1 7RU, UK, stoyanovj@gmail.com
Bibliografia
- [1] C. Berg, On powers of Stieltjes moment sequences. I, J. Theoret. Probab. 18 (2005), pp. 871-889.
- [2] T. M. Bisgaard and Z. Sasvári, Characteristic Functions and Moment Sequences: Positive Definiteness in Probability, Nova Science Publishers, Huntington, NY, 2000.
- [3] L. Bondesson, A class of probability distributions that is closed with respect to addition as well as multiplication of independent random variables, J. Theoret. Probab. 28 (2015), pp. 1063-1081.
- [4] R. Carmona and S. A. Molchanov, Intermittency and phase transitions for some particle systems in random media, in: Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals (Sanda/Kyoto, 1990), K. D. Elworthy and N. Ikeda (Eds.), Pitman Research Notes in Mathematics Series, Vol. 283, Longman Science & Technology, Harlow 1993, pp. 15-36.
- [5] Y. Chen, G. K. Karagiannidis, H. Lu, and N. Cao, Novel approximations to the statistics of products of independent random variables and their applications in wireless communications, IEEE Trans. Vehicular Tech. 61 (2012), pp. 443-454.
- [6] D. B. H. Cline and G. Samorodnitsky, Subexponentiality of the product of independent random variables, Stochastic Process. Appl. 49 (1994), pp. 75-98.
- [7] R. A. Davis and T. Mikosch, Probabilistic properties of stochastic volatility models, in: Handbook of Financial Time Series, T. G. Andersen, R. A. Davis, J.-P. Kreiss, and T. Mikosch (Eds.), Springer, New York 2009, pp. 255-267.
- [8] G. T. F. de Abreu, On the moment-determinance and random mixture of Nakagami-m variates, IEEE Trans. Commun. 58 (2010), pp. 2561-2575.
- [9] U. Frisch and D. Sornette, Extreme deviations and applications, J. Physique Serie I 7 (1997), pp. 1155-1171.
- [10] J. Galambos and I. Simonelli, Products of Random Variables: Applications to Problems of Physics and to Arithmetical Functions, Marcel Dekker, New York 2004.
- [11] G. G. Hamedani and G. G. Walter, On the product of symmetric random variables, Statist. Probab. Lett. 3 (1985), pp. 251-253. Erratum: ibid. 4 (1986), p. 51.
- [12] E. Hashorva, A. G. Pakes, and Q. Tang, Asymptotics of random contractions, Insurance Math. Econom. 47 (2010), pp. 405-414.
- [13] P. Lévy, Esquisse d’une théorie de la multiplication des variables aléatoires, Ann. Sci. École Norm. Sup. (3) 76 (1959), pp. 59-82.
- [14] G. D. Lin, On the moment problems, Statist. Probab. Lett. 35 (1997), pp. 85-90. Erratum: ibid. 50 (2000), p. 205.
- [15] G. D. Lin and J. Stoyanov, Moment determinacy of powers and products of nonnegative random variables, J. Theoret. Probab. 28 (2015), pp. 1337-1353.
- [16] Z. A. Lomnicki, On the distribution of products of random variables, J. Roy. Statist. Soc. Ser. B 29 (1967), pp. 513-524.
- [17] A. G. Pakes, Remarks on converse Carleman and Krein criteria for the classical moment problem, J. Aust. Math. Soc. 71 (2001), pp. 81-104.
- [18] A. G. Pakes, On generalized stable and related laws, J. Math. Anal. Appl. 411 (2014), pp. 201-222.
- [19] A. G. Pakes, W.-L. Hung, and J.-W. Wu, Criteria for the unique determination of probability distributions by moments, Aust. N.Z. J. Stat. 43 (2001), pp. 101-111.
- [20] H. L. Pedersen, On Krein’s theorem for indeterminacy of the classical moment problem, J. Approx. Theory 95 (1998), pp. 90-100.
- [21] K. A. Penson, P. Blasiak, G. H. E. Duchamp, A. Horzela, and A. I. Solomon, On certain non-unique solutions of the Stieltjes moment problem, Discrete Math. Theor. Comput. Sci. 12 (2010), pp. 295-306.
- [22] T. Shimura, The product of independent random variables with regularly varying tails, Acta Appl. Math. 63 (2000), pp. 411-432.
- [23] M. D. Springer, The Algebra of Random Variables, Wiley, New York 1979.
- [24] J. Stoyanov, Inverse Gaussian distribution and the moment problem, J. Appl. Statist. Sci. 9 (1999), pp. 61-71.
- [25] J. Stoyanov and G. D. Lin, Hardy’s condition in the moment problem for probability distributions, Theory Probab. Appl. 57 (2012), pp. 811-820 (SIAM edition: 57 (2013), pp. 699-708).
- [26] J. Stoyanov, G. D. Lin, and A. DasGupta, Hamburger moment problem for powers and products of random variables, J. Statist. Plann. Inference 154 (2014), pp. 166-177.
- [27] Q. Tang, From light tails to heavy tails through multiplier, Extremes 11 (2008), pp. 379-391.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ff32155a-e501-4529-ba6b-99bc1592f944