Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 9 | 19--25
Tytuł artykułu

Zastosowanie źródeł zasilania o szerokim zakresie częstotliwości pracy w układach probierczych przeznaczonych do sprawdzania dokładności przekładników prądowych

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
EN
The application of power sources with a wide operating frequency range in test systems intended for testing the accuracy of current transformers
Języki publikacji
PL
Abstrakty
PL
W artykule porównano programowalne źródło napięcia wykorzystujące technologię PWM z opracowanym układem zasilania składającym się ze wzmacniacza audio i dwukanałowego generatora arbitralnego. Oba źródła zostały zastosowane do zasilania układu probierczego z transformatorem wielkoprądowym przeznaczonego do badania dokładności indukcyjnych przekładników prądowych podczas transformacji prądów odkształconych.
EN
The article compares a programmable voltage source using PWM technology with a developed power supply system consisting of an audio amplifier and a two-channel arbitrary generator. Both sources were used to supply the test system with a high-current transformer designed to test the accuracy of inductive current transformers during the transformation of distorted currents.
Wydawca

Rocznik
Strony
19--25
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
Bibliografia
  • 1. Cataliotti A., Cosentino V., Crotti G., Femine A.D., di Cara D., Gallo D., Giordano D., Landi C., Luiso M., Modarres M., et al., Compensation of Nonlinearity of Voltage and Current Instrument Transformers. IEEE Trans Instrum Meas 68 (2019), doi:10.1109/TIM.2018.2880060.
  • 2. Kaczmarek M., The Source of the Inductive Current Transformers Metrological Properties Deterioration for Transformation of Distorted Currents. Electric Power Systems Research 107 (2014), doi:10.1016/j.epsr.2013.09.007.
  • 3. Kaczmarek M., Inductive Current Transformer Accuracy of Transformation for the PQ Measurements. Electric Power Systems Research 150 (2017), doi:10.1016/j.epsr.2017.05.006.
  • 4. Kaczmarek M., Stano E., The Influence of the 3rd Harmonic of the Distorted Primary Current on the Self-Generation of the Inductive Current Transformers. IEEE Access 10 (2022), 55876–55887, doi:10.1109/access.2022.3177892.
  • 5. Kaczmarek M., The Effect of Distorted Input Voltage Harmonics Rms Values on the Frequency Characteristics of Ratio Error and Phase Displacement of a Wideband Voltage Divider. Electric Power Systems Research 167 (2019), 1–8, doi:10.1016/j.epsr.2018.10.013.
  • 6. Stano E., Measuring System for Testing Wideband Transformation Accuracy of Higher Harmonics of Distorted Current by Inductive Current Transformers. Przeglad Elektrotechniczny 96 (2020), doi:10.15199/48.2020.04.39.
  • 7. Kaczmarek M., Estimation of the Inductive Current Transformer Derating for Operation with Distorted Currents. Bulletin of the Polish Academy of Sciences: Technical Sciences 62 (2014), 363–366, doi:10.2478/bpasts-2014-0036.
  • 8. Stano E., Kaczmarek P., Kaczmarek M., Why Should We Test the Wideband Transformation Accuracy of Inductive Current Transformers? Energies (Basel) 15 (2022), doi:10.3390/en15155737.
  • 9. Cataliotti A., di Cara D., Emanuel A.E., Nuccio S., A Novel Approach to Current Transformer Characterization in the Presence of Harmonic Distortion. In Proceedings of the IEEE Transactions on Instrumentation and Measurement; 2009; Vol. 58
  • 10. Emanuel A.E., Orr J.A., Current Harmonics Measurement by Means of Current Transformers. IEEE Transactions on Power Delivery 22 (2007), doi:10.1109/TPWRD.2007.900108.
  • 11. Kaczmarek M., Stano E., Proposal for Extension of Routine Tests of the Inductive Current Transformers to Evaluation of Transformation Accuracy of Higher Harmonics. International Journal of Electrical Power and Energy Systems113 (2019), doi:10.1016/j.ijepes.2019.06.034.
  • 12. Crotti G., Gallo D., Giordano D., Landi C., Luiso M., Modarres M., Frequency Response of MV Voltage Transformer under Actual Waveforms. IEEE Trans Instrum Meas 66 (2017), doi:10.1109/TIM.2017.2652638.
  • 13. Kaczmarek M., The Effect of Distorted Input Voltage Harmonics Rms Values on the Frequency Characteristics of Ratio Error and Phase Displacement of a Wideband Voltage Divider. Electric Power Systems Research 167 (2019), doi:10.1016/j.epsr.2018.10.013.
  • 14. IEC 61869-103, Inst. Transf. - The Use of Instrument Transformers for Power Quality Measurement; IEC: Geneva, Switzerland, (2010);
  • 15. Kaczmarek M., Stano E., Application of the Sinusoidal Voltage for Detection of the Resonance in Inductive Voltage Transformers. Energies (Basel) 14 (2021), doi:10.3390/en14217047.
  • 16. Kaczmarek M., Stano E., Why Should We Test the Wideband Transformation Accuracy of Medium Voltage Inductive Voltage Transformers? Energies (Basel) 14 (2021), 4432, doi:10.3390/en14154432.
  • 17. Kaczmarek M., Stano E., Measuring System for Testing the Transformation Accuracy of Harmonics of Distorted Voltage by Medium Voltage Instrument Transformers. Measurement 181 (2021), 109628, doi:10.1016/j.measurement.2021.109628.
  • 18. Cataliotti A., Cosentino V., A New Measurement Method for the Detection of Harmonic Sources in Power Systems Based on the Approach of the IEEE Std. 1459-2000. IEEE Transactions on Power Delivery 25 (2010), doi:10.1109/TPWRD.2009.2034480.
  • 19. Wang B., Ma G., Xiong J., Zhang H., Zhang L., Li Z., Several Sufficient Conditions for Harmonic Source Identification in Power Systems. IEEE Transactions on Power Delivery 33 (2018), 3105–3113, doi:10.1109/TPWRD.2018.2870051.
  • 20. Stano E., Kaczmarek M., Wideband Self-Calibration Method of nductive Cts and Verification of Determined Values of Current and Phase Errors at Harmonics for Transformation of Distorted Current. Sensors 20 (2020), 2167, doi:10.3390/s20082167.
  • 21. Stano E., Kaczmarek P., Kaczmarek M., Understanding the Frequency Characteristics of Current Error and Phase Displacement of the Corrected Inductive Current Transformer. Energies (Basel) 15 (2022), doi:10.3390/en15155436.
  • 22. IEC 61869-6, Inst. Transf. - Additional General Requirements for Low-Power Instrument Transformers; Geneva, Switzerland, (2016);
  • 23. IEC 61869-10, Inst. Transf. - Additional Requirements for Low-Power Passive Current Transformers; IEC: Geneva, Switzerland, (2017);
  • 24. IEC 61869-11, Inst. Transf. - Additional Requirements for Low Power Passive Voltage Transformers; (2017);
  • 25. Kaczmarek M., Szczęsny A., Stano E., Operation of the Electronic Current Transformer for Transformation of Distorted Current Higher Harmonics. Energies (Basel) 15 (2022), doi:10.3390/en15124368.
  • 26. Kaczmarek M., Stano E., Proposal for Extension of Routine Tests of the Inductive Current Transformers to Evaluation of Transformation Accuracy of Higher Harmonics. International Journal of Electrical Power and Energy Systems 113 (2019), 842–849, doi:10.1016/j.ijepes.2019.06.034.
  • 27. Stano E., Kaczmarek M., Analytical Method to Determine the Values of Current Error and Phase Displacement of Inductive Current Transformers during Transformation of Distorted Currents Higher Harmonics. Measurement 200 (2022), 111664, doi:https://doi.org/10.1016/j.measurement.2022.111664.
  • 28. Kaczmarek M., Kaczmarek P., Stano E., Evaluation of the Current Shunt Influence on the Determined Wideband Accuracy of Inductive Current Transformers. Energies (Basel)15 (2022), doi:10.3390/en15186840.
  • 29. Kaczmarek M., Kaczmarek P., Stano E., The Effect of the Load Power Factor of the Inductive CT’s Secondary Winding on Its Distorted Current’s Harmonics Transformation Accuracy. Energies (Basel) 15 (2022), doi:10.3390/en15176258.
  • 30. Faifer M., Ottoboni R., Toscani S., Cherbaucich C., Mazza P., Metrological Characterization of a Signal Generator for the Testing of Medium-Voltage Measurement Transducers. IEEE Trans Instrum Meas 64 (2015), doi:10.1109/TIM.2014.2376113
  • 31. Kaczmarek M.L., Stano E., Application of the Inductive High Current Testing Transformer for Supplying of the Measuring Circuit with Distorted Current. IET Electr Power Appl 13 (2019), doi:10.1049/iet-epa.2018.5803.
  • 32. Pressman A., Billinds K., Morey Taylor, Switching Power Supply Design; 3rd ed.; Mc Graw Hill: New York, (2009);
  • 33. Belkheiri A., Aoughellanet S., Belkheiri M., Reconfigurable Three-Phase SPWM Implementation on DE2 FPGA. Przeglad Elektrotechniczny 89 (2013).
  • 34. Sia L.H., Jamuar S.S., Sidek R.M., Marhaban M.H., Digital-Signal-Processor-Based Waveform Generator. Meas Sci Technol 18 (2007), doi:10.1088/0957-0233/18/7/N01.
  • 35. Kaczmarek M., Kaczmarek P., Stano E., The Performance of the High-Current Transformer during Operation in the Wide Frequencies Range. Energies (Basel) 15 (2022), doi:10.3390/en15197208
  • 36. Brodecki D., Stano E., Andrychowicz M., Kaczmarek P., Emc of Wideband Power Sources. Energies (Basel) 14 (2021), 1457, doi:10.3390/en14051457.
  • 37. Kaczmarek M., Kaczmarek P., Comparison of the Wideband Power Sources Used to Supply Step-up Current Transformers for Generation of Distorted Currents. Energies (Basel) 13 (2020), 1849, doi:10.3390/en13071849.
  • 38. Stano E., Kaczmarek M., Testing of Power Frequency Magnetic Field Immunity of Measurement Equipment Used in High-Current Systems. Przeglad Elektrotechniczny 95 (2019), doi:10.15199/48.2019.03.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ff1e4898-63e3-4147-bc2b-ae54f6796009
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.