Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 17, nr 1-2 | 345--348
Tytuł artykułu

Implementation of a tolerance model in a computer aided design and inspection system

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Purpose of this paper is present a detailed framework to integrate the Computer Aided Design (CAD) and Inspection (CAI) systems through the integration of the Geometric Dimensioning and Tolerancing (GD&T) with the inspection process in coordinate measuring machines (CMMs). Design/methodology/approach: The approach used to develop a prototype of a Knowledge Based System (KBS) applied to inspection process establishes a new methodology for integrate the geometric dimensioning and tolerancing (GD&T). The integration is achieved through the definition of the knowledge units for functional properties of GD&T, inspection resources and inspection operations in a common knowledge model. The manufacturing and processing applications are the main topics approach of this paper. Findings: The findings are focused in modeling the features and interactions between knowledge units associated to topology, geometry and tolerances with the inspection process activities. The implementation of the product knowledge model is presented in a computer platform that extracts and represents the GD&T information in a CAI system. Research limitations/implications: The implications are focused on the automation of the inspection process in a KBS application. The future research is focused on the use of artificial intelligent technique, such as genetic algorithms and neural networks, to optimize the time to execute the inspection process. Practical implications: The main outcomes and implication of the KBS prototype application are focused on the reduction of the time spend to develop the inspection process. This KBS application provides the needed information to elaborate this process without the human interface. Originality/value: The original value of this paper is the integration of the design and inspection specification in a unique prototype application. The knowledge model has been defined in a common modeling language (UML) and can be implemented in different informatics platforms.
Wydawca

Rocznik
Strony
345--348
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Mechanical Engineering Department, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile, rhunter@ufro.cl
autor
  • Mechanical Engineering Department, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
autor
  • Mechanical Engineering Department, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco, Chile
autor
  • Mechanical and Manufacturing Engineering Department, Polytechnic University of Madrid, Jose Gutierrez Abascal 2, 28006 Madrid, Spain
Bibliografia
  • [1] H. Toulorge, A. Riviere, A. Bellacicco, R. Sellakh, Towards a digital functional assistance process for tolerancing, Journal of Computing and Information Science in Engineering 3 (2003) 39-44.
  • [2] J. Barreiro, J. Labarga, A. Vizán and J. Ríos, Information model for the integration of inspection activity in a concurrent engineering framework, International Journal of Machine Tools & Manufacturing 43 (2003) 797-809.
  • [3] S. Zhang, A. Ajmal, J. Wootton, A. Chisholm, A feature-based inspection process planning system for co-ordinate measuring machine (CMM), Journal of Materials Processing Technology 107 (2000) 111-118.
  • [4] C. Yuen, S. Wong, K.P. Venuvinod, Development of a generic computer aided process planning support system, Journal of Materials Processing Technology 139 (2003) 394-401.
  • [5] R. Hunter, A. Vizán, J. Pérez and J. Ríos, Knowledge models as an integral way to reuse the knowledge for fixture design process, International Conference on Advances in Materials and Processing Technology, AMPT’2005, Gliwice-Wisla, 2003, 254-257.
  • [6] ISO-10303, Product data representation and exchange Part 1: Overview and fundamental principles. ISO 10303 Part 1, 1993.
  • [7] ASME Y14.5M-1994, Dimensioning and Tolerancing. American Society of Mechanical Engineers, 1994.
  • [8] X. Zhao, T. Kethara, R. Wilhelm, Modeling and representation of geometric tolerances information in integrated measurement process, Computers In Industry, Article in Press, 2005.
  • [9] K. Rennels, Current methodology for geometric dimensioning and tolerancing, Technical Paper, IEEE, 2003.
  • [10] N. Bugtai, R. Young, Information models in an integrated fixture decision support tool, Journal of Materials Processing Technology 76 (1998) 29-35.
  • [11] R. Hunter, A. Vizán, J. Pérez and J. Ríos, Knowledge models as an integral way to reuse the knowledge for fixture design process, Journal of Materials Processing Technology 164-165 (2005) 1510-1518.
  • [12] R. Hunter, Definition and integration of requirements and manufacturing functions in a KBE system applied to machining fixture design. PhD Thesis, Polytechnic University of Madrid, 2004.
  • [13] G. Schreiber, B. Wielinga, W. Jansweijer, The KACTUS view on the “O” word. University of Amsterdam, 1995.
  • [14] B. Wielinga, A. Schereiber, J. Breuker, KADS: a modeling approach to knowledge engineering, Knowledge Acquisition 4 (1992) 5-53.
  • [15] G. Schreiber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de Velde, B. Wielinga, Knowledge engineering and management. The commonKADS methodology. The MIT Press, 2001.
  • [16] M. Stokes, Managing engineering knowledge: MOKA methodology for knowledge based engineering applications. ASME Press, 2001.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-ff02da75-e1bd-4801-a4a4-3426b16d3a88
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.