Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 25 | 121--125
Tytuł artykułu

In-Bed Person Monitoring Using Thermal Infrared Sensors

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (16 ; 02-05.09.2021 ; online)
Języki publikacji
EN
Abstrakty
EN
Technological solutions involving cameras can contribute to safety in home and healthcare, but they pose privacy issues. We use a low-resolution infrared thermopile array sensor, which offers more privacy, to determine if the user is on the bed. Two datasets were captured, one under constant conditions, and a second one under different variations. We test three machine learning algorithms under 10-fold cross validation, with the highest accuracy in the main dataset being 99%. The results with variable data show a lower reliability under certain circumstances, highlighting the need of extra work to meet the challenge of variations in the environment.
Wydawca

Rocznik
Tom
Strony
121--125
Opis fizyczny
Bibliogr. 17 poz., il., wykr.
Twórcy
autor
  • School of Information Technology (ITE), Halmstad University, Sweden
  • School of Information Technology (ITE), Halmstad University, Sweden
  • School of Information Technology (ITE), Halmstad University, Sweden, feralo@hh.se
Bibliografia
  • 1. S. S. (SCB), “Stora insatser krävs för att klara 40-talisternas äldreomsorg,” https://www.scb.se, accessed 03/2021.
  • 2. Boverket, National Board of Housing, Building and Planning, “Bostadsmarknadsenkäten,” www.boverket.se, accessed 03/2021.
  • 3. Eurostat, “Ageing europe - statistics on population developments,” https: //ec.europa.eu/eurostat, accessed 03/2021.
  • 4. Panasonic, “Infrared array sensor grid-eye,” https://industrial.panasonic.com/cdbs/www-data/pdf/ADI8000/ADI8000C66.pdf, accessed 03/2021.
  • 5. J. Lundström et al., “Halmstad Intell Home,” Proc HealthyIoT, 2016.
  • 6. A. Rogalski, Infrared Detectors, C. Press, Ed. CRC Press, 2020.
  • 7. A. D. Shetty et al., “Detection and tracking of a human using the infrared thermopile array sensor — Grid-EYE,” in Proc IEEE ICICICT, 2017.
  • 8. A. Trofimova et al., “Indoor human detection based on thermal array sensor data & adaptive backgr. estimation,” J. Comp & Comm (5), 2017.
  • 9. Z. Chen, Y. Wang, “Infrared–ultrasonic sensor fusion for SVM–based fall detection,” J. Intell Material Systems and Structures (29) 2018
  • 10. B. Pontes et al., “Human-sensing: Low res thermal array classif of location postures,” Dist Ambient & Perv Interactions, Springer 2017
  • 11. C.-L. Liu et al., “Fall detect sys w kNN classif,” Expert Sys Appl 2010
  • 12. C. Cortes, V. Vapnik, “Support-vector nets,” Mach. Learn. (20), 1995.
  • 13. S. Dudani, “Distance-weighted k-nearest-neighb rule,” IEEE TSMC 1976
  • 14. E. Alpaydin, Introduction to Machine Learning, The MIT Press, 2010.
  • 15. D. Stathakis, “How many hidden layers & nodes” J Rem Sensing, 2009.
  • 16. A. Burkov, “The Hundred-Page Machine Learning Book” http://themlbook.com/wiki/doku.php, 2019.
  • 17. D. Altman et al., “Statistics with Confidence Confidence Intervals and Statistical Guidelines,” John Wiley & Sons 2013
Uwagi
1. Track 1: Artificial Intelligence in Applications
2. Session: 15th International Symposium Advances in Artificial Intelligence and Applications
3. Short Paper
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fef5e073-1a9d-487b-ba43-109204a3f3a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.