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INTRODUCTION

Rainfall-runoff modeling is of primordial im-
portance to ensure optimal water resource manage-
ment and flood mitigation (Young and Liu, 2015). 
It is particularly crucial in the context of increasing 
intensity and frequency of extreme meteorological 
events induced by climate change (Clarke et al., 

2022). According to Tabari et al., (2020) there is 
an intensification of extreme precipitation, which 
converges towards more extreme floods across dif-
ferent climatic regions. These floods are consid-
ered a global natural hazard with high costs and 
risks (Blöschl et al., 2019), which emphasizes the 
valuable need to anticipate and accurately predict 
extreme runoff. Nonetheless, runoff prediction 

Deep Learning Approach for Runoff Prediction – Evaluating 	
the Long-Short-Term Memory Neural Network Architectures for 
Capturing Extreme Discharge Events in the Ouergha Basin, Morocco

Nourelhouda Karmouda1*, Tarik Bouramtane1, Mounia Tahiri1,
Ilias Kacimi1, Marc Leblanc1,2, Nadia Kassou1

1	 Geosciences, Water and Environment Laboratory, Faculty of Sciences, Mohammed V University in Rabat, 
Avenue Ibn Batouta, Rabat, Morocco

2	 Hydrogeology Laboratory, UMR EMMAH, University of Avignon, Avignon, France
*	 Corresponding author’s e-mail: nourelhouda_karmouda@um5.ac.ma

ABSTRACT
Rainfall-runoff modeling plays a crucial role in achieving efficient water resource management and flood forecast-
ing, particularly in the context of increasing intensity and frequency of extreme meteorological events induced 
by climate change. Therefore, the aim of this research is to assess the accuracy of the Long-Short-Term Memory 
(LSTM) neural networks and the impact of its architecture in predicting runoff, with a particular focus on capturing 
extreme hydrological discharges in the Ouergha basin; a Moroccan Mediterranean basin with historical implica-
tions in many cases of flooding; using solely daily rainfall and runoff data for training. For this purpose, three LSTM 
models of different depths were constructed, namely LSTM 1 single-layer, LSTM 2 bi-layer, and LSTM 3 tri-layer, 
their window size and hyperparameters were first tuned, and on seven years of daily data they were trained, then 
validated and tested on two separate years to ensure the generalization on unseen data. The performance of the 
three models was compared using hydrogram-plots, Scatter-plots, Taylor diagrams, and several statistical metrics. 
The results indicate that the single-layer LSTM 1 outperforms the other models, it consistently achieves higher 
overall performance on the training, validation, and testing periods with a coefficient of determination R-squared 
of 0.92, 0.97, and 0.95 respectively; and with Nash-Sutcliffe efficiency metric of 0.91, 0.94 and 0.94 respectively, 
challenging the conventional beliefs about the direct link between complexity and effectiveness. Furthermore, all 
the models are capable of capturing the extreme discharges, although, with a moderate underprediction trend for 
LSTM 1 and 2 as it does not exceed -25% during the test period. For LSTM 3, even if its underestimation is less 
pronounced, its increased error rate reduces the confidence in its performance. This study highlights the impor-
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factors like upstream dam releases to enhance the efficiency in capturing the peaks of extreme events.
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remains a challenging task due to its complex and 
nonlinear nature, necessitating robust models and 
enhanced accuracy (Aqnouy et al., 2021; Man et 
al., 2022). Over the past decades, several hydro-
logical models (stochastic, conceptual, or physi-
cally based models) have been usually considered 
foundational for rainfall-runoff simulation (Bahre-
mand and De Smedt, 2010, 2008; Tingsanchali, 
2000) However, they are subject to various chal-
lenges, including the significant requirement for 
diverse data types, the heterogeneity of the natural 
systems and the complexities in representing non-
linear dependencies, and capturing extreme events. 

With the advances in computing capacity, 
the need for improved accuracy, and reduced 
complexity, machine learning techniques have 
emerged as a promising horizon. Thus, an increas-
ing tendency toward deep learning has been no-
ticed with a particular interest in Artificial Neural 
Networks (ANNs), and it was extensively utilized 
by researchers in a variety of applications (Alard-
hi et al., 2023; Babu et al., 2022; Bashayreh et 
al., 2021; Chen et al., 2023; Oni et al., 2022). In 
the field of hydrology, ANNs derive their strength 
from their adaptability and ability to perceive 
complex and intricate connections between the 
variables, which is essential for simulating the 
inherent complexity and non-linearity of the hy-
drological systems (Govindaraju and Rao, 2000; 
Wu and Chau, 2011). Furthermore, they have the 
capability not only to generalize from varied his-
torical training data but also to produce robust 
predictions even under changing conditions and 
without requiring in-depth comprehension of the 
underlying hydrological dynamics (Bouramtane 
et al., 2023; Rajaee et al., 2019). Numerous re-
search have previously focused on the potential 
of ANNs for predicting and forecasting runoff 
under various conditions by using different vari-
ables, time steps, and architectures; for instance, 
Hsu et al., (1995) highlighted the effectiveness 
of ANNs in modeling the rainfall-runoff dynam-
ics of the Leaf River, against linear and conven-
tional conceptual models. In their comparison of 
the Soil and Water Assessment Tool SWAT and 
ANN, Demirel et al., (2009) demonstrated the 
superior accuracy of the latter, specifically in the 
prediction of peak flows within the Pracana ba-
sin in Portugal. Expanding the scope, Juan et al., 
(2017) used ANNs to predict runoff fluctuations 
in the Three-River Headwater Region (TRHR) on 
the Qinghai-Tibet Plateau with the context of cli-
mate change, confirming the utility and validity 

of ANNs despite data and parameter limitations. 
Moreover,  Xiang et al., (2020) found that the Re-
current Neural Networks model; a subset of neu-
ral networks adept at processing sequential data 
and recognizing temporal dependencies (Sherst-
insky, 2020); outperforms regression models in 
estimating hourly runoff in two USA watersheds. 
Further, the study of Zema et al., (2020) under-
scored the efficiency of Multi-Layer Perceptron 
architecture (MLP) which is a feedforward ANN, 
in predicting the hydrological behaviors across 
diverse soil conditions in Southeast Spain, em-
phasizing their efficacy in controlling runoff and 
soil erosion, especially in fire-affected areas. 

While (ANNs) have proven their ability to 
capture the hydrological response even without 
previous knowledge of the catchment’s physical 
characteristics (Haykin, 1999), the Long-Short-
Term Memory models (LSTMs) which are the 
improved architecture of the Recurrent Neural 
Network (RNN) (Hochreiter and Schmidhuber, 
1997) take this ability one step further by cleverly 
capturing also the sequential and long-term de-
pendencies (Yu et al., 2019). The LSTM distinct 
design that incorporates memory cells togeth-
er with the output and forget gates (Gers et al., 
2000), allows data to be stored and recalled for 
extended periods, thereby accurately accounting 
for past hydrological events while simultaneously 
capturing current ones. This feature is particularly 
relevant due to the intricate temporal dynamics of 
hydrological processes, where the impact of prior 
rainfall events can manifest in river flows sever-
al days or weeks later, depending on the unique 
characteristics of the catchment region. How-
ever, as with any advanced modeling technique, 
LSTM networks are not exempt from challenges 
that can profoundly influence their performance, 
such as the identification of the best architecture, 
the selection of the window sizes (time step), 
and the tuning of the hyperparameters (neurons 
number, batch size, epochs, etc). Recently, many 
studies have been made to explore the efficiency 
of LSTM for hydrological purposes; Fang et al., 
(2017) were the first authors that have explored 
LSTM techniques in the field of hydrology to ex-
tend the coverage of Soil Moisturization Active 
Passive (SMAP) data, they have found LSTM is 
to be effective in removing bias, correcting mois-
ture climatology, and capturing extremes. Be-
sides, Both in their research Hu et al., (2018), and 
Mao et al., (2021) have used the ANN and LSTM 
for rainfall-runoff simulation, their findings 
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indicate that the performance of LSTM surpasses 
that of ANN, especially in daily time steps. Fur-
thermore, Fan et al., (2020) tested the impact of 
the window size on the performance of LSTM, 
and compared LSTM with ANN and SWAT, their 
results indicate that ANN and SWAT have almost 
the same capacity to reproduce runoff, but LSTM 
outperforms both of them, the reason why they 
suggest LSTM as the best alternative in case of 
catchments with a lack of topographical data.

To extend this knowledge, this study aims to 
assess the potential impact of the LSTM archi-
tecture on runoff prediction, with a particular fo-
cus on capturing extreme occurrences using only 
daily rainfall and runoff data for training. For this 
purpose, three LSTM models of varying depths, 
ranging from single-layer to multi-layer, were 
built. Our approach adheres to a rigorous meth-
odology, including the adjustment of the window 
size, the fine-tuning of the hyperparameters using 
the grid-search method with the ADEM optimiz-
er( Bergstra and Bengio, 2012; Kingma and Ba, 
2017), and the splitting of the used data into train-
ing, validation, and test sets, which is essential to 
ensure the robustness of the models and the good 
generalization to unseen data and thus the predic-
tion of extreme runoff with their best reliability. 

The case study area of this paper, is the 
Ouergha basin, a Moroccan Mediterranean Riv-
er basin. It’s the principal contributor to the Al 
Wahda dam the largest reservoir of the country 
and the main regulator of the floods in the Se-
bou floodplain. On many occasions, the Ouergha 
River basin has been the major cause of down-
stream floods causing high material damage and 
human casualties as in 2009 and 2010. The choice 
of this region is therefore significant, as through 
this study we aim to make a substantial contribu-
tion to the understanding of how machine learn-
ing, specifically LSTM networks, can be utilized 
in predicting extreme hydrological events. The 
overall aim is to provide hydrologists and deci-
sion-makers with a more accurate and reliable 
tool for managing water resources and mitigating 
the risks associated with extreme weather events.

MATERIALS AND METHODS

Study area

The study area is located in central northern 
Morocco (Fig. 1a), between latitudes 34.379°, 

35.139° North and longitudes 3.906°, 5.371° West 
(Fig. 1b). The Ouergha is the main tributary of the 
Sebou River (Combe, 1975), and the major con-
tributor to the inflow of the Al Wahda dam. This 
river drains the southern side of the Rif mountains 
and traverses a distance of 300 km, featuring a 20 
km segment upon entering the Sebou flood plain. 

This study narrows its focus to the flood genesis 
zone upstream of the Al Wahda dam, an area that 
constitutes approximately 80% of the total basin 
and covers 6190 km² of lands with elevations rang-
ing from 145 to 2450 m. It’s equipped with 4 dams 
(Al Wahda, Asfalou, Bouhouda, and Sahla) and 11 
meteorological stations, 4 of them also function as 
discharge gauging stations (Fig. 1c). The topogra-
phy within this region is notably complex, marked 
by rugged terrains. Approximately 86% of the area 
possesses a slope greater than 12%, while only 3% 
features a gentler slope of 3% or lower. In addition, 
the basin is mainly of clay soils, Mesozoic shale, 
and marl formations which contribute to the wa-
tershed’s low permeability. Consequently, the area 
exhibits limited water retention capacity, resulting 
in high runoff rates, and fast response. Further, Se-
noussi et al. (1999) affirm that the Ouergha region, 
which is characterized by a Mediterranean climate 
is the most humid area in Morocco, where rainfalls 
principally occur from October to April. This leads 
to a hydrological regime marked by high winter 
flow rates. Notably, between late 2008 and early 
2011, the Ouergha basin experienced unusual pre-
cipitation height, resulting in discharge rates that 
surpassed 3000 m³/s. According to Msatef et al. 
(2018), the estimated return period of discharges 
that exceeds 2500 m³/s, as calculated using the 
Gumbel distribution, is more than 1000 years (T 
> 1000), assigning these events as extreme. Con-
sequently, these exceptional runoff volumes, sur-
passed the storage capacities of the regional res-
ervoirs, leading to riverbank inundations in the 
Sebou floodplain (Fig. 2).

Datasets

To achieve the aim of this study, we used only 
two variables rainfall and runoff, their time se-
ries were provided by the Direction of Research 
and Water Planning (DRWP) of Morocco Rain-
fall data were collected from 11 meteorological 
stations situated within the Ouergha basin (Fig. 
1c), while runoff data were obtained from Al 
Wahda dam’s hydrometric station. The daily da-
taset spans from January 2003 to December 2010 
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and resumes briefly from late 2012 until the end 
of 2013. Missing data are minimal, accounting 
for less than 2% at only three stations (Asfalou, 
Boured, and Jbel Outka) (Table 1). Depending on 
the data characteristics of each station, the gaps 
were filled using the convincible statistical im-
putation or spatial interpolation methods, such 
as linear regression method or inverse distance 
weight method respectively. In addition, the intra-
stations and the runoff-stations linear correlations 

are visually represented in a heatmap (Figure 3). 
Generally, the precipitation measurements show 
strong intra-station agreement. Most stations also 
demonstrate a satisfactory correlation with runoff, 
with the exceptions of Ain Aicha, Bouhouda, and 
Sahla. These particular stations have weak corre-
lations, with coefficients of 0.46, 0.39, and 0.47, 
respectively. To assess the statistical significance 
of these correlations, t-tests were employed with 
a significance level set at α=0.05. The resulting 

Figure 1. (a), (b) Location of the study area; (c) the study area elevation, dams, and gauge stations

Figure 2. Landsat 5 TM images, false-color, tracking inundations of the Sebou floodplain in 2010
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p-values for all stations were lower than 0.05 and 
tended toward zero. This suggests that these corre-
lations are statistically significant and unlikely to 
have occurred by chance. The near-zero p-values 
for Ain Aicha, Bouhouda, and Sahla affirm that 
these weak correlations are statistically validated 
rather than anomalous. Due to these weak yet sta-
tistically significant correlations, we opted to ex-
clude data from Ain Aicha, Bouhouda, and Sahla 
to maintain the study’s overall consistency. Fur-
ther, the preprocessing conducted on this data is 
the Standardization; which is usually recommend-
ed in machine learning, and definitely needed 
when variables have different units. Thus, we used 
the z-score normalization (equation 1), it enables 
to rescale data to a mean of 0 and a standard devia-
tion of 1 (Shanker et al., 1996), which enhances 
numerical stability and accelerates learning.

	 𝑧𝑧 = 𝑥𝑥 − 𝜇𝜇
𝜎𝜎  (1) 

 

	 (1)

where: 	x – the value to be transformed to z, μ – 
the mean and σ – the standard deviation of 
the data set.

Finally, several descriptive statistics of the 
data sets including mean values, medians, maxi-
ma, minima, standard deviation and coefficient of 
variation are listed in Table 2.

Deep learning model

Long short-term memory (LSTM)

Recurrent Neural Networks(RNN), are sim-
ple neural systems that utilize loops to process 
sequences of inputs (Williams and Zipser, 1989, 
Sherstinsky, 2020). These loops facilitate the 
transfer of information from one layer to another 
and provide the RNN with a memory capability, 
which allows the network to store past compu-
tations and exhibit dynamic temporal behavior 

Table 1. Summary, and characteristics of Ouergha’s stations
N° Station Missing data % Z (m) N° Station Missing data % Z (m)

1 Ain Aicha 0 250 7 Hajria 0 191

2 Asfalou 1.02 658 8 Jbel Outka 2.05 1091

3 Bab Ouender 0 392 9 Ratba 0 295

4 Bouhouda 0 487 10 Sahla 0 370

5 Boured 0.20 840
11

Tabouda 0 182

6 Galez 0 251

Figure 3. Heatmap of the intra-stations and the runoff-stations linear correlation
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(Sharma et al., 2022). Despite this innovative archi-
tecture, RNNs face certain challenges such as the 
exploding and vanishing gradient problems while 
learning long-term dependencies (Hochreiter, 1991; 
Hochreiter et al., 2001). To overcome these limi-
tations, the LSTM architecture was conceived by 
(Hochreiter and Schmidhuber, 1997) as an advance-
ment over the fundamental structure of RNNs.

LSTM networks are composed of an input 
layer, memory cells, and an output layer, aim-
ing to model complex dependencies in sequen-
tial data over extended durations with enhanced 
efficiency and robustness. The improvement of 
LSTM has been progressively refined by numer-
ous researchers (Kawakami, 2008), through the 
integration of three distinct gates into the memory 
cell: the forget gate, the input gate, and the out-
put gate. Together, these gates interact to manage 
the storage and retrieval of information within the 
network. This enables precise control of data flow 
and memory usage, selectively preserving essen-
tial information across longer sequences, and 
thus allowing the network to disregard insignifi-
cant information (Gers et al., 2000). The technical 
insights, including the equations that vectorize 
and describe the update of the memory cells in 
the LSTM layer at every time-step t, are detailed 
(Fischer and Krauss, 2018).

LSTM setup

In this study, three models, each with varying 
complexities and numbers of LSTM layers, were 
implemented in TensorFlow using the Keras li-
brary in Python. “LSTM 1” is the simplest model, 

containing a single LSTM layer that functions as 
both input and hidden layer, followed by a drop-
out layer to prevent the model from overfitting. 
Then, a dense output layer is added to conclude 
the model. “LSTM 2” builds upon this architec-
ture, incorporating two LSTM layers, two corre-
sponding dropout layers, and two dense layers. 
“LSTM 3”, the most complex model in this study, 
adds an additional LSTM and dense layer to the 
structure of LSTM 2. Further details regarding 
the models’ parameters, such as the number of 
units and the dropout rate, are presented in the 
hyperparameters tuning section.

Tuning procedure

Window size tuning

In hydrological modeling using LSTM, the 
window size or time step is crucial for runoff pre-
diction and extreme event identification (Gao et 
al., 2020). It defines the range of historical data 
considered by the algorithm and influences the 
model’s ability to capture temporal patterns in the 
data (Liu et al., 2021).

In this study, we optimized the window size 
for LSTM 1,2 and 3 models to achieve concise 
runoff simulations. To address time constraints 
and computational limitations, we fixed other hy-
perparameters, such as units, epochs, batch size, 
and dropout rate. Subsequently, specific window 
sizes ranging from 1 to 30 days were evaluated. 
Window sizes of 1–5 days capture short-term 
data fluctuations, such as daily weather changes 
and storms, while 10–25 days reveal underlying 

Table 2. Descriptive statistics of datasets

Data
Mean Med Max Min STDV CV % Mean Med Max Min STDV CV % Mean Med Max Min STDV CV %

Training (01/01/2003 - 31/12/2009) Validation (01/01/2010 - 01/12/2010) Test (01/12/2012 - 31/12/2013)

Runoff 59.47 12.72 2908.73 0 164.15 276.02 269.23 34.31 3361.71 0.06 550.27 204.39 124.8 27.61 2106.66 0.21 266.71 213.7

Ain Aicha 1.18 0 72.5 0 4.47 378.5 2.5 0 67.2 0 7.5 300.18 1.58 0 53.2 0 5.67 358.47

Asfalou 1.67 0 112.2 0 6.07 363.17 3.73 0 150.8 0 12.05 323.55 2.49 0 87.1 0 8.49 341.56

Bab Ounder 1.72 0 96 0 6.13 355.7 3.97 0 120.7 0 11.99 302.11 2.46 0 83.4 0 8.39 340.44

Bouhouda 1.65 0 122.4 0 6.07 367.63 3.04 0 130.8 0 11.05 363.11 1.86 0 65.8 0 6.86 369.05

Boured 1.42 0 81 0 5.44 384.03 3.79 0 136.8 0 12.4 327.62 2.45 0 73.1 0 8.16 333

Galez 1.86 0 95.3 0 6.61 356.02 3.84 0 114.8 0 11.84 308.4 2.39 0 74.6 0 8.36 349.66

Hajria 1.81 0 78.6 0 6.58 364.42 3.66 0 102.7 0 11.29 308.62 2.12 0 64 0 7.21 339.12

Jbel Outka 3.55 0 220 0 12.4 349.79 7.07 0 179.6 0 19.81 280.26 4.92 0 130.6 0 15.5 315.22

Ratba 2.55 0 140.2 0 8.71 341.87 5.86 0 125.1 0 16.44 280.38 3.36 0 100 0 10.78 320.74

Sahla 2 0 108.8 0 6.87 343.79 3.64 0 115.3 0 12.17 334.56 1.95 0 71.3 0 7.21 369.27

Tabouda 1.54 0 79.5 0 5.54 359.95 4.17 0 123 0 12.51 300.34 2.37 0 75 0 8.18 345.12
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runoff trends. A 30-day window identifies month-
ly trends. The optimal window size with the best 
model performance will define which variability 
impacts the most the hydrological regime of the 
Ouergha basin and then will be selected for the 
following phases of this study.

Hyperparameters tuning

Training an LSTM network involves man-
aging both learnable parameters and hyperpa-
rameters. The learnable parameters are updated 
during training, based on a specific loss function 
like MSE and using back-propagation (Yin et 
al., 2022). While hyperparameters, such as units 
(Hidden Neurons), batch size (number of samples 
in each training iteration), epochs (the total num-
ber of training cycles), and dropout rate (a mecha-
nism to prevent overfitting), are either fixed by us-
ers or determined through hyperparameter tuning. 

According to Goodfellow et al., 2016, hyper-
parameter tuning can be defined as the systematic 
search for the optimal set of hyperparameters that 
results in the minimization of a predefined loss 
function on a specific dataset, thereby enhancing 
the efficacy of the model in question. Therefore, 
to achieve the optimal performance of the LSTM 
models in predicting hydrological patterns, we em-
ployed a gridsearchCV methodology, which is a 
commonly used approach for hyperparameters op-
timization (Bergstra and Bengio, 2012) over four 
iterative rounds of tuning. Each round involved ad-
justing four key hyperparameters: number of units, 
batch size, number of epochs, and dropout rate. In 
the first round, an extensive grid was set up to 
explore a wide range of hyperparameter combi-
nations. Based on the performance metrics, sub-
sequent rounds incrementally narrowed the grid 
around the most promising values. For instance, 
the initial round tested units ranging from 100 to 
1000, batch sizes from 64 to 365, epochs from 15 
to 60, and dropout rates from 0.1 to 0.4. The best-
performing combination guided the grid settings 
for the next round. The final round of tuning iden-
tified an optimal set of hyperparameters for each 
variant of the LSTM models. This grid-based, 
iterative approach enabled the fine-tuning of the 
models to accurately capture the complexities in-
trinsic to hydrological processes.

Several additional details about the model 
configurations are noteworthy: To guarantee re-
producibility, random seeds were fixed across all 
experiments. A fixed learning rate of 0.01 was 

used, as we observed that its variation had no 
significant impact on model performance in our 
specific case. Optimization and training were per-
formed using the ADAM optimizer, which is a 
version of the stochastic gradient method (King-
ma and Ba, 2017), together with a Mean Squared 
Error (MSE) as a loss function.

Study procedure

In machine learning, the data is divided into 
three sets: training, validation, and test sets. The 
training set is the sample of data used to fit the 
model by adjusting its internal parameters, and 
the validation set fine-tunes the model hyperpa-
rameters and gives an initial assessment of per-
formance (Ripley, 1996). It uses a data set with 
known samples that the model has not been trained 
on (Xu and Goodacre, 2018). In the past, it was 
widely assumed that the evaluation of a model’s 
performance based on validation results provided 
an unbiased measure of overall efficiency. How-
ever, researches including the study of (Wester-
huis et al., 2008), has challenged this assumption, 
suggesting that it may not always be accurate. 
(Harrington, 2017) has similarly demonstrated 
that splitting data into training and validation sets 
(considered in this context as both validation and 
test sets) could lead to an imprecise evaluation of 
a model’s robustness (Xu and Goodacre, 2018). 
These findings underscore the necessity of em-
ploying an independent blind test set, never previ-
ously used in either training or validation periods 
(Alpaydin, 2010), to avoid any potentially biased 
assessment of the model’s performance. In this 
paper, the dataset is divided as follows: 78% for 
training, 11% for validation, and 11% for testing. 
These segments correspond to the periods from 
1/1/2003 to 12/31/2009, 1/1/2010 to 12/ 31/2010, 
and from 12/1/2012 to 11/30/2013, respectively. 

Evaluation metrics

The model’s ability to accurately predict the 
watershed’s hydrological behavior under both or-
dinary and extreme conditions is evaluated using 
the metrics listed in Table 3; the performance rat-
ing of each of them is listed in Table 4. The co-
efficient of determination R2 assesses the degree 
of agreement between simulated and observed 
runoff (Moriasi et al., 2007). The Root Mean 
Square Error-observations standard deviation ra-
tio (RSR), is calculated as the ratio of the RMSE 
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and standard deviation of measured data to quali-
fy what is considered to be a low RMSE (Singh et 
al., 2004). The Percent bias (PBIAS), is a metric 
that gauges the model’s tendency to either over-
predict or under-predict observed values (Gupta 
et al., 1999). The Nash-Sutcliffe Efficiency (NSE) 
is a widely used metric in hydrology, often serv-
ing as an objective function. According to Servat 
and Dezetter (1991), it provides a holistic mea-
sure of a hydrograph’s goodness of fit. A model 
is considered robust when the predicted runoff is 
closely aligned with observed data, leading to an 
NSE value approaching 1 (Kouassi et al., 2013).

RESULTS 

Tuning results

Window size variation results

As presented in the methodology section, we 
examined the impact of various time window siz-
es (1, 2, 3, 4, 5, 10, 15, 20, 25, 30) days, on each 

LSTM model results. The models’ performance in 
reproducing runoff was assessed using RMSE and 
NSE metrics. The results of this tuning are present-
ed in Figure 4. It is worth noting that the RMSE 
metric is considerably higher in the validation than 
in the training sets, this disparity must be attributed 
to the varying means between the two sets (𝑄̅𝑄 

  
 

train-

ing = 59.47 m3/s and 𝑄̅𝑄 
  
 

validation= 269.23 m3/s), which 
is caused by the extreme flow rates present in the 
validation set. During the training, all models dis-
played optimal performance with one-day window 
size, recording the lowest RMSE of 58.14 m3/s, and 
achieving a high NSE efficiency of 0.87. However, 
as the window extended from one to five days, a 
trend emerged: barring a minor spike at the 4-day 
window for LSTM 3, there was a general decline 
in models’ performance. Beyond the 5-day win-
dow, the RMSE plateaued for all models, the NSE 
continued to decrease achieving its lowest rate 
0.73 in the 25-day window size for LSTM 1 and 2, 
and 0.71 in the 20-day window size for LSTM 3. 
In the validation, the superior performance of the 

Table 3. List of the statistical metrics (Moriasi et al., 2015)
Statistical metric Equation Value range Perfect value 

Coefficient of determination 
(R2) 𝑅𝑅2 =   

(

 
 ∑ (𝑄𝑄𝑜𝑜 − 𝑄𝑄𝑜𝑜)(𝑄𝑄𝑠𝑠 − 𝑄𝑄𝑠𝑠̅̅ ̅)𝑛𝑛

𝑖𝑖=1

√∑ (𝑄𝑄𝑜𝑜 − 𝑄𝑄𝑜𝑜)
2𝑛𝑛

𝑖𝑖=1     √∑ (𝑄𝑄𝑠𝑠 − 𝑄𝑄𝑠𝑠̅̅ ̅)2𝑛𝑛
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Root mean square error 
(RMSE) 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = √  
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RMSE observations standard 
deviation ratio (RSR) 
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Note: Qo – the observed flow, the Qs – the predicted flow, n – the total number of the observation.

Table 4. Performance measurements for stream flow simulation (Moriasi et al., 2015, 2007)
Statistical metric Unsatisfactory Satisfactory Good Very good

R2 R2 <0.50 0.50 ≤ R2<0.70 0.70≤R2<0.80 ≥0.80

RSR RSR > 0.7 0.6 < RSR ≤ 0.7 0.5 < RSR ≤ 0.6 0 < RSR ≤ 0.5

PBIAS PBIAS ≥ ±25 ±10 ≤ PBIAS < ±25 ±5 ≤ PBIAS < ±10 PBIAS < ±5

NSE NSE ≤ 0.5 0.5 < NSE ≤ 0.60 0.60 < NSE ≤ 0.80 0.80 < NSE ≤ 1
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Figure 4. Comparison of RMSE and NSE for window size impact on training and validation (LSTM 1, 2, 3)

one-day window for LSTM 1 is reaffirmed with an 
NSE of 0.84 and the lowest error rates of 220 m3/s. 
These metrics inversely evolve in the subsequent 
windows as RMSE increases and NSE decreases. 
For LSTM 2, the initial three window sizes (1, 2, 
and 3 days) emerge as optimal; all boasting an 
NSE of 0.84 and minimized RMSE of 222.86, 
221.44, and 223.77 m3/s respectively. In contrast, 

the validation for LSTM 3 reveals that the two-day 
window has the best NSE of 0.86 and the lowest 
validation error of 209.99 m3/s.

Hyperparameters tuning results

Each LSTM model underwent four rounds 
of hyperparameter tuning. Table 5 illustrates the 

Table 5. Hyperparameter tuning rounds and results for LSTM Models 1, 2, and 3

Data
Tunned values Results

Round Units Batch size Epochs Dropout Units Batch Epochs Dropout

LSTM 
1

1 100, 500, 1000 64,128,365 15,30,60 0.1 to 0.4 1000 365 15 0.3

2 800,1000,1200 128,365 10, 15, 20 0.1 to 0.4 1200 365 15 0.4

3 1150,1200, 1250 365 14,15,16 0.1 to 0.4 1250 365 14 0.3

4 1240,1250,1260 365 14,15 0.1 to 0.4 1260 365 14 0.3

LSTM 
2

1 100, 500, 1000 64,128,365 15,30,60 0.1 to 0.4 1000 365 30 0.4

2 800,1000,1200 125, 365 25,30,35 0.1 to 0.4 800 365 30 0.4

3 700, 800, 900 365 30 0.1 to 0.4 800 365 30 0.4

4 790, 800, 810 365 30 0.1 to 0.4 800 365 30 0.4

LSTM 
3

1 100, 500, 1000 64,128,365 16,32,64 0.1 to 0.4 100 128 32 0.2

2 100,150,200 128, 256 22,32,42 0.1 to 0.4 150 128 22 0.3

3 125,150,175 128 22, 32 0.1 to 0.4 150 128 22 0.4

4 100,150 64,128 22,32 0.1 to 0.4 150 128 22 0.1
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different sets of hyperparameters used during the 
tuning rounds for each LSTM model. It illustrates 
also the hyperparameters optimal configurations 
fixed by GridsearchCV using the ADEM optimiz-
er. In the optimization process, each LSTM model 
exhibited distinct preferences for the number of 
units. LSTM 1, being a single-layer model, tended 
to prefer around 1260 units. The two-layer LSTM 
2 found an optimal configuration with approxi-
mately 800 units per layer. The LSTM 3, with its 
three-layer architecture, consistently opted for a 
lower unit count of 150. For the batch size, LSTM 
1 and 2 constantly chose the larger size of 365. 
Furthermore, LSTM 3 favored a smaller batch size 
of 128. Regarding epochs tuning, LSTM 1 has sta-
bilized at 14 epochs beyond this, there might not 
be a significant improvement or there could be a 
risk of overfitting. LSTM 2 stabilized on 30 ep-
ochs, and for LSTM 3 the 22 epochs were found 
to be optimal. Finally, for the dropout, LSTM 1 
and 2 often opted for higher values of 0.3 or 0.4 

but LSTM 3 showed a broader optimal range from 
0.1 to 0.4. Based on these findings, it becomes evi-
dent that as the rounds of tuning progress, there is 
a clear pattern of convergence on specific hyper-
parameters. This implies that the tuning process 
is efficiently narrowing down to the optimal con-
figuration. We relied on the results of the fourth 
round and set those optimized hyperparameters 
for the training, validation, and testing periods of 
the models. The subsequent section provides the 
assessment of the models’ results for each dataset.

The performance of the models

Training period

Evaluating the training performance of a mod-
el is of great importance. Good results during this 
period are an indicator that the model has effec-
tively captured underlying patterns in the training 
period. Hence, if a model cannot achieve a good 

Figure 5. Graphical comparison of observed and predicted runoff by 
LSTM models 1, 2, and 3 during the training period
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performance, its capability on unseen data be-
comes questionable. Based on this principle, this 
section presents an evaluation of the training re-
sults using graphical analysis and metrics detailed 
previously. According to Figure 5, the overall pat-
tern depicts that the three models have a reasonable 
understanding of the system dynamics. It’s clear 
that the predicted runoff ranges from low flow or 
base flow conditions to very high values indicat-
ing intense to extreme discharge episodes.How-
ever, differences in their performances emerge at 
peaks of significant anomalies. There’s an evident 
trend across the models to underestimate the most 
pronounced anomalies, specifically the discharges 
of the year 2009. The underestimation rate does 
not only vary from one model to another but also 
varies with each anomaly. In terms of correlation, 
while all models display excellent performance, 
LSTM 1 stands out with a determination coeffi-
cient R2 of 0.92, followed by LSTM 2 and LSTM 
3, with R² of 0.91 and 0.88 respectively. All the 
statistical metrics from the training period for each 
model are graphically presented in Figure 6.

The results show that LSTM 1 emerges as the 
most accurate model, capturing 92% of the vari-
ability in observed discharge and registering the 
lowest error ratio of 0.3, equivalent to 48 m3/s. 
Although LSTM 2 and 3 also perform proficient-
ly but slightly lower than LSTM 1, with R2 values 
of 0.91 and 0.88, respectively. Furthermore, all 
the studied models exhibit excellent NSE scores 
that closely reflect their R2 values, as well as RSR 
indices below the 0.5 thresholds are considered 
excellent. However, in terms of PBIAS, LSTM 
1 and 2 show minor overestimations of 2.87% 
and 2.7 %, respectively, whereas LSTM 3 has a 
more substantial overestimation of 7.28 %. When 
it comes to capturing extreme runoff anomalies 

exceeding 2000 m3/s, all models generally tend 
to an underestimation pattern, whereas LSTM 2 
is beyond the satisfactory threshold since the un-
derestimation is -29% (Fig. 6b). All these result 
metrics confirm that LSTM 1 consistently outper-
forms the other two models during the training 
period. The subsequent section will extend this 
assessment to the validation period.

Validation period

Reliable performance in the validation period, 
particularly in accurately reproducing extreme 
runoff events, not only confirms the training re-
sults but also serves as an initial assessment of 
the model’s generalization ability, setting the pe-
riod for the final evaluation in the testing period. 
For this purpose, the graphical fit and correlation 
between observed and predicted runoff by LSTM 
models 1, 2, and 3 during the validation period 
are exhibited in Figure 7.

The graphs indicate that the predictions from 
the three models exhibit a close alignment with 
the actual runoff data, particularly during periods 
of low runoff, demonstrating their good perfor-
mance under conditions of watershed stability or 
predictable behavior. In addition, the models cap-
ture the seasonal trends in the data with varying 
degrees of accuracy. Furthermore, the three mod-
els generally capture the trend during high runoff 
periods, but they often fail to accurately capture 
the peaks of extreme anomalies. This limitation 
in the performances of the three models is more 
graphically evident during the months of January, 
March, and December 2010 (Fig. 7).

The statistical comparisons of these findings 
are displayed in Figure 8. LSTM 1 and LSTM 
2 notably excel with high R2 values of 0.97 and 

Figure 6. Statistical metrics assessment of LSTM Models 1, 2, and 3 during the training period
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Figure 7. Graphical comparison of observed and predicted runoff by 
LSTM models 1, 2, and 3 during the validation period

0.94, respectively. This high performance is fur-
ther supported by their NSE scores of 0.94 and 
0.90 respectively, which also indicate an excellent 
fit to the observed data. In contrast, LSTM 3 falls 
behind in accurately capturing runoff variabil-
ity, despite still performing well with an NSE of 
0.87. In terms of the RSR metric, all three models 
show good results. However, LSTM 1 continues 
to emerge as the most accurate, closely followed 
by LSTM 2, while LSTM 3 displays a relatively 
higher error ratio. Overall, these metrics collec-
tively suggest LSTM 1 as the most reliable model 
for runoff prediction during the validation period.

The PBIAS metrics during the validation 
period show a shift from the training results. All 
models exhibit an overall tendency to underesti-
mate runoff, with LSTM 3 showing the least bias 
at -3.03 (Fig. 8b). In stark contrast, LSTM 1 and 
LSTM 2 have considerably higher biases of -15.26 
and -16.49, respectively. This divergence becomes 
even more noteworthy when focusing on extreme 

runoff events exceeding 2000 m3/s. LSTM 1 man-
ages to keep its underestimation below the accept-
able 25% threshold, with a rate of 19.88%. On the 
other hand, both LSTM 2 and LSTM 3 surpass 
this threshold, signaling potential challenges in 
accurately predicting extreme runoff scenarios.

Test period

The test period covers a year of dataset and 
comprises a combination of three flow types: the 
base flow, the high runoff, and two extreme dis-
charge events. The graphical fit and correlation be-
tween the observed and predicted runoff by LSTM 
models 1, 2, and 3 during the test period are pre-
sented in Figure 9. It’s visible that the predicted 
runoff during this period aligns with the results of 
the validation, as all the models capture variabil-
ity, seasonality, and trend of the runoff data.

In fact, both LSTM 1 and LSTM 2 adeptly 
reproduce the low flow variability. However, a 
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Figure 8. Statistical metrics assessment of LSTM Models 1, 2, and 3 during the validation period

Figure 9. Graphical comparison of observed and predicted runoff 
by LSTM models 1, 2, and 3 during the test period

divergence appears between their performanc-
es from late 2012 to early March 2013 and 
throughout April. During these intervals, while 
LSTM 2 seems to offer a more accurate simula-
tion of the high runoff, LSTM 1 tends to slightly 

underestimate it. On the other hand, in the two 
extreme discharge events, both models capture 
the extreme anomalies with almost the same level 
of underestimation. LSTM 3 presents a distinct 
pattern. It’s the best in simulating the two extreme 
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discharge peaks even though with a slight under-
estimation. However, there is an evident tempo-
ral lag with the low flow peaks, coupled with an 
overestimation of most high runoff. 

Regarding the correlation pattern, the runoff 
predicted by LSTM 1 visibly demonstrates the 
best correlation, closely followed by LSTM 2 
which exhibits nearly identical agreement. Nev-
ertheless, scatter plots for LSTM 2 reveal that 
runoff exceeding 1200 m³/s is less correlated than 
those below this threshold. LSTM 3 also shows 
a strong correlation, but it’s narrowing to over-
estimate most runoff surpassing 600 m³/s. The 
statistical metrics displayed in Figure 10, offer 
additional insight into the overall performance of 
the three models in the test period.

The strong linear correlation between the ob-
served and predicted runoff, identified in the pre-
vious periods, persists with the test period. Here, 
LSTM 1 and LSTM 2 account for the maximum 
runoff variability with an R2 of 0.95 and 0.94, 
respectively (Fig. 10a). This very good perfor-
mance is also proven by an NSE score of 0.94 for 
both models. Conversely, while LSTM 3 exhibits 
a minor lag, it also achieves a good correlation 
coefficient of 0.89 and an NSE score of 0.82, thus 
affirming its ability to capture hydrological pat-
terns during the test period. Further, it became 
evident that LSTM 1 and 2 outperformed LSTM 
3 in terms of error metrics. The smallest error ra-
tio observed in this study is less than 0.26 and was 
recorded for LSTM 1 and 2, which is equivalent 
to error magnitudes of 69 m3/s and 68 m3/s, re-
spectively. LSTM 3, exhibits a broader error ratio 
with an RSR of 0.42, corresponding to an error 
magnitude of 166 m3/s. Moreover, there is a clear 
tendency for LSTM 1 and 2 to underestimate not 

only typical runoff with biases of -9% and -5% 
respectively; but also, extreme discharges with 
biases of up to -15% for discharges above 2000 
m3/s, which is consistent with the graphical ob-
servations made above. In contrast, LSTM 3 gen-
erally overestimates runoff but achieves the clos-
est predictions for extreme discharge events.

The results from this period have further clar-
ified the comparative outcomes of the three mod-
els. They also demonstrate a strong consistency 
with the findings from the validation period and 
reaffirm that the three models have been success-
fully trained and tuned but with different degrees 
of performance. In fact, both LSTM 1 and LSTM 
2 emerge as strong competitors and show almost 
similar performances of accuracy and reliability, 
which is reflected in closely aligned metrics such 
as R2 and Nash, their only divergence resides in 
the LSTM 1’s slightly higher negative bias. How-
ever, the LSTM 3 model possesses a distinct char-
acteristic which is the ability to accurately capture 
the peaks of extreme discharge events considered 
a notable strength. Nevertheless, it tends to over-
estimate typical runoff, a tendency confirmed by 
its significant positive bias.

Assessment of the models’ overall performance

To identify the best model performance the 
Taylor diagram was used (Fig. 11). This diagram 
visually compares modeled to observed data us-
ing three key metrics: standard deviation (radial 
distance from the origin), correlation coefficient 
(angular position), and RMSE (contour lines). In 
the diagram, the reference point represents the 
observed position on the x-axis, based on its stan-
dard deviation. It provides a consolidated view of 

Figure 10. Statistical metrics assessment of LSTM Models 1, 2, and 3 during the test period
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model performance, allowing easy assessment of 
model accuracy and variability. It is noteworthy 
that a model’s proficiency is defined by its prox-
imity to the reference point.

The diagram indicates that LSTM 1 and 2 
consistently maintain the highest correlation coef-
ficients across all periods, suggesting their predic-
tions closely align with observed runoff values. 
While they exhibit fewer errors, implying precision 
and consistency, they are somewhat less effective 
in capturing the full range of runoff fluctuations, 
particularly during the validation and test periods. 
Comparison between the LSTM 1, 2, and 3 results 
cross the three periods using a Taylor diagram. 
However, LSTM 3 also demonstrates a strong cor-
relation but excels in capturing a broader range of 
runoff variations, especially in the training and val-
idation periods. Due to increased errors, LSTM 3 
is the least precise model across all periods. There-
fore, while LSTM 3 may be more adept at predict-
ing a wider range of hydrological variations, its 
predictions should be interpreted with caution due 
to the higher likelihood of inaccuracies. Overall, 

both LSTM 1 and LSTM 2 achieved notable re-
sults throughout the study. Nevertheless, LSTM 1 
demonstrated a visibly superior performance dur-
ing the validation and testing period, exhibiting a 
lower rate of errors and a stronger correlation, thus 
indicating it to be the optimal model.

DISCUSSION

While LSTMs are designed to capture long-
term dependencies in time series data (Li and 
Wang, 2022), the number of layers or the depth 
within the network can have significant implica-
tions on how well these dependencies are cap-
tured. In this study, since the first experimenta-
tion, the three models have revealed a divergence 
in defining the suitable window size for capturing 
the hydrological pattern of the studied basin. The 
models’ level of complexity has led to a differ-
ent window size preference, likely due to their 
varying degrees of sensitivity toward major and 
underneath patterns within data. While the single 

Figure 11. Comparison between the LSTM 1, 2, and 3 results cross the three periods using a Taylor diagram
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layer LSTM 1 may primarily focus on the major 
patterns (Xu et al., 2021), more complex models, 
such as LSTM 3 with multiple layers, may be 
more adept at understanding complex temporal 
patterns spread out over longer periods. Neverthe-
less, deeper models are more prone to overfitting 
(Mejia Cajica et al., 2021), as they might capture 
not only the underlying patterns but also noise in 
the training data. The Ouergha basin; known for 
its rugged impermeable lands, low-density cano-
py, and brief concentration time (Karmouda et al., 
2023), appears to naturally align with a one-day 
window size theoretically sufficient to capture 
the runoff variability and is practically defined 
as preferable for the single-layer LSTM 1 and 
the bilayer LSTM 2. Otherwise, LSTM 3, with 
its three-layer structure, shows intriguing perfor-
mance nuances. Although it excels with a one-day 
window in training, a two-day window proves su-
perior during validation. This could be a reflec-
tion of subtle patterns ignored by the less complex 
models, or a highlight of the model’s ability to 
capture both short-term and longer hydrological 
patterns, making it versatile. However, the com-
plex architecture of LSTM 3 brings an elevated 
risk of overfitting, particularly with shorter win-
dows (Mejia Cajica et al., 2021). Thus, balanc-
ing performance and overfitting considerations, a 
two-day window was selected for LSTM 3.

This analysis aligns with the tuning results, 
revealing a notable diversity in the optimized hy-
perparameters. It became clear that each model 
can reach an optimization of the learning process, 
focusing on either depth or width. For LSTM 1, 
possessing a substantial number of units (1260) 
might enhance its ability to identify a diverse set 
of features. In contrast, LSTM 2, with a fewer 
number of units per layer (800), seems to strike 
a balance between temporal dependencies and 
feature extraction. LSTM 3, with its consistent 
preference for the lower unit count of 150, sug-
gests a reliance on depth for feature extraction 
over individual layer width. Regarding the batch 
size, LSTM 1 and 2 are tuned with a larger batch 
size (365), likely aiming to stabilize gradient esti-
mations and facilitate model convergence. In op-
position, LSTM 3 opted for a smaller batch size 
of 128, possibly to allow more frequent weight 
updates in its complex architecture. In terms of 
epoch tuning, LSTM 1 plateaued at 14 epochs, 
indicating that extending beyond this might either 
offer marginal improvements or introduce overfit-
ting risks. LSTM 2, which was set at 30 epochs, 

implies that its two-layer structure may necessi-
tate extended iterations for optimal convergence, 
as opposed to a single-layer LSTM. Meanwhile, 
for LSTM 3, the 22 epochs seem to represent a 
harmony between training time and convergence.

When considering dropout, both LSTM 1 
and 2 leaned towards elevated values, probably 
as a preventive measure against overfitting, giv-
en their substantial unit sizes. In contrast, LSTM 
3 demonstrated a broader optimal range, span-
ning from 0.1 to 0.4, reflecting its sensitivity to 
different regularization needs in its three-layer 
structure. Overall, the substantial reduction in 
the number of units from LSTM 1 (1260) to 
LSTM 3 (150) may reveal each model’s unique 
approach to managing the specific characteris-
tics of the dataset. This leads to varying degrees 
of accuracy in predicting both regular and ex-
treme runoff, which underscores the complexity 
of defining an optimal model architecture and 
leads us to examine the consistency and effec-
tiveness of each model. The main results of this 
study indicate several insights. Despite its sim-
pler architecture, the consistent performances of 
LSTM 1 across all periods emphasize the impor-
tance of a balanced architecture in the context 
of hydrological modeling. These findings high-
light that a simple and well-designed model can 
potentially outperform those with more layers. 
Also, the efficiency of LSTM 1 may reflect the 
characteristics of the dataset, suggesting that a 
model’s complexity must align with the underly-
ing dynamics within the hydrological data. 

Additionally, the LSTM 2 exhibits almost 
similar performance characteristics and is particu-
larly adept at capturing a wide spectrum of hydro-
logical patterns. Its performance metrics indicate 
reliable and robust behavior across different peri-
ods, making it an attractive option when LSTM 1 
is not effective. However, the performance gap in 
LSTM 3 despite its three-layer architecture, ad-
justed hyperparameters, and 2-day window size 
likely results from the complex interaction of fac-
tors in the machine learning tuning. The 2-day 
window size, although optimal during tuning, 
may not align with the overall needs of the hy-
drological modeling task or may have been influ-
enced by an overfitting of validation data. More-
over, the inherent complexity of LSTM 3 might 
not correspond to the nature of the data, leading 
to suboptimal performance. This underscores the 
importance of a holistic approach to model selec-
tion, considering hyperparameters in conjunction 
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with each other, the specific characteristics of the 
data, and the hydrological modeling needs. Fur-
ther, although few studies have utilized single-
layer LSTM for predictions and their results con-
trast with ours (Berhich et al., 2020 and Salman et 
al., 2018), a significant number of research across 
various domains suggests that two-layer LSTMs 
are effective for prediction (Xu et al., 2021; Yin 
et al., 2022; Zia and Zahid, 2019), which support 
the finding of this study. Finally, the detection of 
extreme discharge events poses a challenge across 
all models. A consistent tendency towards under-
prediction, as evident in the EQp values, empha-
sizes the difficulties encountered by the models in 
effectively capturing the outliers within the distri-
bution. While testing the models, this underesti-
mation is deemed acceptable for LSTM 1 and 2, 
since it does not exceed -25%. With LSTM 3, this 
underestimation is even less pronounced but with 
a marked trend for error. This observation has a 
serious impact on hydrological forecasting, espe-
cially in scenarios where the precise prediction of 
extreme events is essential.

The root cause of this behavior may be linked 
to the training data lacking sufficient extreme 
samples (Sahraei et al., 2021), impeding the mod-
els’ ability to adequately learn these patterns. Ra-
himzad et al., (2021) also support this finding and 
reported that earlier research, such as (Damavandi 
et al., 2019; Jimeno-Sáez et al., 2018) has noted 
similar behavior with models based on neural net-
works. It can be also related to other unaccounted 
variables influencing the discharge, such as up-
stream dams’ releases, especially that the Ouergha 
basin is equipped with 3 upstream dams. This study 
provides an interesting insight into the potential of 
LSTM neural networks in predicting runoff. It em-
phasizes the importance of aligning model com-
plexity with data specifications and also suggests 
the necessity to consider unaccounted factors like 
upstream dam releases to enhance the efficiency in 
capturing the peaks of extreme events.

CONCLUSIONS

This study has provided several key insights 
into the performance of LSTM models and the 
influence of their architecture on the accuracy of 
runoff prediction in the Ouergha basin. First and 
foremost, LSTM models exhibit a robust ability 
to accurately simulate river discharge and identify 
extreme events using only chronological rainfall 

and runoff data for training. In fact, the high data 
requirements can create significant obstacles for 
hydrologists and policymakers. The overall per-
formance of LSTM in this study, suggests that 
these deep learning models offer a potential al-
ternative to the conventional distributed models, 
which are data-intensive, requiring variables like 
soil type, land use, and climatic conditions such 
as evaporation and temperature.

Second, the different models’ architecture 
showed varying preferences for window sizes, re-
vealing a nuanced relationship between the com-
plexity of the model’s architecture and its ability 
to detect different hydrological patterns. For ex-
ample, while single and bi layer LSTMs favored 
a one-day window, the tri-layer LSTM 3 leaned 
towards a two-day window. Further, the consis-
tent excellent performance of the simplest model, 
LSTM 1, challenges the traditional notion that 
performance efficacy is directly proportional to 
complexity. LSTM 2, with its balanced approach, 
excels in environments requiring a fine-tuned re-
lationship between temporal dependencies and 
feature extraction. Both these models are well-
adapted to the Ouergha basin characterized by 
rugged impermeable lands, low-density canopy, 
and brief concentration time; also, they exhibit 
the highest level of accuracy in simulating runoff 
variability over extended time intervals, which 
implies their potential applicability in assessing 
the future implications of various climate change 
scenarios on runoff patterns. In contrast, although 
LSTM 3 displays adequate performance, it lags 
behind the simpler models in the overall accuracy. 
However, its ability to minimize underprediction 
in extreme events, positions it as the preferable 
choice for the forecast of eventual flood events.

Finally, the intricacies of deep learning op-
timization demand a careful alignment of model 
complexity and depth with data specifications, 
which is essential to avoid overfitting or the under-
detection of the hydrological underlying dynam-
ics. Moreover, it is important to take into account 
additional variables such as water releases from 
upstream dams, as these could profoundly affect 
the accuracy of extreme discharge predictions.
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