Czasopismo
2014
|
Vol. 62, no 1
|
23--27
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
It is proved that the nth Stern polynomial Bn(t) in the sense of Klavžar, Milutinović and Petr [Adv. Appl. Math. 39 (2007)] is the numerator of a continued fraction of n terms. This generalizes a result of Graham, Knuth and Patashnik concerning the Stern sequence Bn(1). As an application, the degree of Bn((t) is expressed in terms of the binary expansion of n.
Słowa kluczowe
Rocznik
Tom
Strony
23--27
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-656 Warszawa, Poland, schinzel@impan.pl
Bibliografia
- [1] K. Dilcher and K. B. Stolarsky, A polynomial analogue to the Stern sequence, Int. . Number Theory 3 (2007), 85-103.
- [2] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 1994.
- [3] S. Klavžar, U. Milutinovič and C. Petr, Stern polynomials, Adv. Appl. Math. 39(2007), 86-95.
- [4] O. Perron, Die Lehre von den Kettenbruchen, 2nd ed., Teubner, 1927; reprint, Chelsea, New York, 1950.
- [5] A. Schinzel, On the factors of Stern polynomials (remarks on the preceding paper of M. Ulas), Publ. Math. Debrecen 79 (2011), 83-88.
- [6] M. Ulas, On certain arithmetic properties of Stern polynomials, Publ. Math. Debrecen 79 (2011), 55-81.
- [7] I. Urbiha, Some properties of a function studied by de Rham, Carlitz and Dijkstra and its relation to the (Eisenstein-)Stern's diatomic sequence, Math. Comm. 6 (2001), 181-198.
Typ dokumentu
Bibliografia
Identyfikatory
DOI
Identyfikator YADDA
bwmeta1.element.baztech-fea61021-be1b-4874-b378-afec485a987c