Czasopismo
2013
|
Vol. 33, Fasc. 2
|
435--450
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We study a general definition of convolution products of test white noise functionals, of which the consistency property is examined. As an application of the consistency property of the convolution product we study an extension of the convolution to generalized white noise functionals. We also study relations between the convolution and generalized Fourier-Gauss and generalized Fourier-Mehler transforms.
Czasopismo
Rocznik
Tom
Strony
435--450
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju 361-763, Korea, uncigji@chungbuk.ac.kr
autor
- Research Institute for Natural Science, Hanyang University, Seoul 133-791, Korea, kimyy@chungbuk.ac.kr
autor
- Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea, yjpark@chungbuk.ac.kr
Bibliografia
- [1] R. G. Baraniuk, P. Flandrin, A. J. E. M. Janssen, and O. J. J. Michel, Measuring time-frequency information content using the Rényi entropies, IEEE Trans. Inform. Theory 47 (2001), pp. 1391-1409.
- [2] D. M. Chung, T. S. Chung, and U. C. Ji, A simple proof of analytic characterization theorem for operator symbols, Bull. Korean Math. Soc. 34 (1997), pp. 421-436.
- [3] D. M. Chung and U. C. Ji, Transforms on white noise functionals with their applications to Cauchy problems, Nagoya Math. J. 147 (1997), pp. 1-23.
- [4] D. M. Chung, U. C. Ji, and N. Obata, Quantum stochastic analysis via white noise operators in weighted Fock space, Rev. Math. Phys. 14 (2002), pp. 241-272.
- [5] L. Gross, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), pp. 123-181.
- [6] T. Hida, Analysis of Brownian functionals, Carleton Math. Lecture Notes, no. 3, Carleton University, Ottawa 1975, pp. 241-272.
- [7] T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), pp. 661-673.
- [8] M. K. Im, U. C. Ji, and Y. J. Park, Relations between the first variation, the convolutions and the generalized Fourier-Gauss transforms, Bull. Korean Math. Soc. 48 (2011), pp. 291-302.
- [9] U. C. Ji and Y. Y. Kim, Convolution of white noise operators, Bull. Korean Math. Soc. 48 (2011), pp. 1003-1014.
- [10] U. C. Ji and N. Obata, A unified characterization theorem in white noise theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), pp. 167-178.
- [11] S. M. Kay and S. B. Doyle, Rapid estimation of the range-Doppler scattering function, IEEE Trans. Signal Process. 51 (2003), pp. 255-268.
- [12] I. Kubo and S. Takenaka, Calculus on Gaussian white noise I-IV, Proc. Japan Acad. 56A (1980), pp. 376-380, pp. 411-416; 57A (1981), pp. 433-437; 58A (1982), pp. 186-189.
- [13] H.-H. Kuo, Convolution and Fourier transform of Hida distributions, in: Stochastic Partial Differential Equations and Their Applications, Lecture Notes in Control and Inform. Sci., Vol. 176, Springer, 1992, pp. 165-176.
- [14] H.-H. Kuo, White Noise Distribution Theory, CRC Press, 1996.
- [15] H.-H. Kuo, J. Potthoff, and L. Streit, A characterization of white noise test functionals, Nagoya Math. J. 121 (1991), pp. 185-194.
- [16] N. Obata, An analytic characterization of symbols of operators on white noise functionals, J. Math. Soc. Japan 45 (1993), pp. 421-445.
- [17] N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Math., Vol. 1577, Springer, Berlin 1994.
- [18] N. Obata and H. Ouerdiane, A note on convolution operators in white noise calculus, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14 (2011), pp. 661-674.
- [19] J. Potthoff and L. Streit, A characterization of Hida distributions, J. Funct. Anal. 101 (1991), pp. 212-229.
- [20] E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (1932), pp. 749-759.
- [21] J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), pp. 731-738.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fdce0d42-2b54-4313-8c95-1e51058d455c