Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 50, nr 1 | 175--189
Tytuł artykułu

Approximation by q-analogue of modified Jakimovski-Leviatan-Stancu type operators

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we introduce the q-analogue of the Jakimovski-Leviatan type modied operators introduced by Atakut with the help of the q-Appell polynomials. We obtain some approximation results via the well-known Korovkin’s theorem for these operators. We also study convergence properties by using the modulus of continuity and the rate of convergence of the operators for functions belonging to the Lipschitz class. Moreover, we study the rate of convergence in terms of modulus of continuity of these operators in a weighted space.
Wydawca

Rocznik
Strony
175--189
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Department of Mathematics, Jamia Millia Islamia University, New Delhi 110005, India, nasir3489@gmail.com
autor
Bibliografia
  • [1] Lupaş A., A q-analogue of the Bernstein operator, In Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, Cluj-Napoca, 1987, 9, 85–92.
  • [2] Phillips G. M., Bernstein polynomials based on the q-integers, Ann. Numer. Math., 1997, 4, 511–518.
  • [3] Acar T., Asymptotic formulas for generalized Szász-Mirakyan operators, Appl. Math. Comput., 2015, 263, 223-239.
  • [4] Acar T., Quantitative q-Voronovskaya and q-Grüss-Voronovskaya-type results for q-Szasz Operators, Georgian Math. J., 2016, 23, 459–468.
  • [5] Acar T., (p, q)-Generalization of Szasz-Mirakyan operators, Math. Meth. Appl. Sci., 2016, 39, 2685–2695.
  • [6] Mursaleen M., Khan A., Statistical approximation properties of modified q- Stancu-Beta operators, Bull. Malays. Math. Sci. Soc., 2013, 36, 683–690.
  • [7] Mursaleen M., Khan A., Generalized q-Bernstein-Schurer operators and some approximation theorems, J. Funct. Spaces Appl., Article ID 719834, Volume 2013, 7 pages.
  • [8] Mursaleen M., Khan F., Khan A., Approximation properties for modified q-Bernstein-Kantorovich operators, Numer. Funct. Anal. Optim., 2015, 36, 1178–1197.
  • [9] Mursaleen M., Khan F., Khan A., Approximation properties for King’s type modified q-Bernstein-Kantorovich operators, Math. Meth. Appl. Sci., 2015, 38, 5242–5252.
  • [10] Mursaleen M., Nasiruzzaman M., Dunkl generalization of Kantorovich type Szasz-Mirakjan operators via q-calculus, Asian-Eur. J. Math., DOI: 10.1142/S1793557117500772.
  • [11] Mursaleen M., Nasiruzzaman M., Al-Abied A. A. H., Dunkl generalization of q-parametric Szasz-Mirakjan operators, Int. J. Anal. Appl., 2017, 13, 206–215.
  • [12] Srivastava H. M., Mursaleen M., Alotaibi A., Nasiruzzaman M., Al-Abied A. A. H., Some approximation results involving the q-Szász-Mirakjan-Kantorovich type operators via Dunkl’s generalization, Math. Meth. Appl. Sci., DOI:10.1002/mma.4397.
  • [13] Ulusoy G., Acar T., q-Voronovskaya Type Theorems for q-Baskakov operators, Math. Meth. Appl. Sci., 2016, 39, 3391–3401.
  • [14] Büyükyazıcı İ., Tanberkan H., Serenbay S., Atakut C., Approximation by Chlodowsky type Jakimovski-Leviatan operators, Jour. Comput. Appl. Math., 2014, 259, 153–163.
  • [15] Mursaleen M., Ansari K. J., Nasiruzzaman M., Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials, Iranian Jour. Sci. Tech.-A (Sci.) (accepted).
  • [16] Keleshteri M. E., Mahmudov N. I., A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comp., 2015, 260, 351–369.
  • [17] Atakut C., I. Büyükyazici, Approximation by modied integral type Jakimovski-Leviatan operators, Filomat, 2016, 30, 29–39.
  • [18] Choi J., Srivastava H. M., q-Extensions of a multivariable and multiparameter generalization of the Gottlieb polynomials in several variables, Tokyo J. Math., 2014, 37, 111–125.
  • [19] Srivastava H. M., Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Inform. Sci., 2011, 5, 390–444.
  • [20] Srivastava H. M., Choi J., Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier Science Publishers, Amsterdam, London and New York, 2012.
  • [21] Weisstein E. W., q-Derivative, From Math World-A Wolfram Web Resource; Available online at http://mathworld.wolfram.com/q-Derivative.html.
  • [22] Weisstein E. W., q-Integral, From Math World-A Wolfram Web Resource; Available online at http://mathworld.wolfram.com/q-Integral.html.
  • [23] Jackson F. H., On q-definite integrals, Quart. J. Pure Appl. Math., 1910, 41, 193–203.
  • [24] Kac V., Cheung P., Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
  • [25] Kac V., A. De Sole, On integral representations of q-gamma and q-beta functions, Rend. Mat. Acc. Lincei, 2005, 9, 11–29.
  • [26] Appell P., Une classe de polynômes, Ann. Sci. École Norm. Sup., 1880, 9, 119–144.
  • [27] Al-Salam W. A., q-Appell polynomials. Ann. Mat. Pura Appl., 1967, 4, 31–45.
  • [28] Gadzhiev A. D., A problem on the convergence of a sequence of positive linear operators on unbounded sets, and theorems that are analogous to P. P. Korovkin’s theorem. Dokl. Akad. Nauk SSSR (Russian), 1974, 218, 1001–1004.
  • [29] Gadzhiev A. D., Weighted approximation of continuous functions by positive linear operators on the whole real axis, Izv. Akad. Nauk Azerbaijan. SSR Ser. Fiz.-Tehn. Mat. Nauk (Russian), 1975, 5, 41–45.
  • [30] Milovanović G. V., Mursaleen M., Nasiruzzaman M., Modied Stancu type Dunkl generalization of Szász-Kantorovich operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM, DOI 10.1007/s13398-016-0369-0.
  • [31] Wafi A., Rao N., Rai D., Appproximation properties by generalized-Baskakov-Kantrovich-Stancu type operators, Appl. Math. Inform. Sci. Lett., 2016, 4, 111–118.
  • [32] Wafi A., Rao N., A generalization of Szász-type operators which preserves constant and quadratic test functions, Cogent Math., 2016, 3, 1227023.
  • [33] Korovkin P. P., Linear Operators and Approximation Theory, Hindustan Publ. Co., Delhi 1960.
  • [34] Ciupa A., A class of integral Favard-Szász type operators, Stud. Univ. Babeş-Bolyai, Math., 1995, 40, 39-47.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fdba776c-bcc3-400a-b2c0-0e5df6f232cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.