Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Operationally complete representation of work done and the corresponding to it potential energy within the usual radial/center-bound, nonrotating gravitational force fields comprises two extra terms: linear nonradial and angular nonradial, in addition to the usual radial term. Since these nonradial terms have negative signs, they suggest presence of potentials corresponding to repulsive forces generated by the very same, usual radial attractive force field. The extra linear nonradial term depends on exposure of an orbiting satellite to the distribution of mass within the field, whereas the extra angular nonradial term also depends on that as well as on exposure of the satellite to density of matter of the mass source that generates the usual, locally dominant radial/center-bound attractive gravitational force field.
Słowa kluczowe
Rocznik
Tom
Strony
16--30
Opis fizyczny
Bibliogr. 28 poz., rys., wz.
Twórcy
autor
- Science/Mathematics Education Department, Southern University and A & M College, Baton Rouge, LA 70896, USA, sunswing77@netscape.net
Bibliografia
- [1] Jeffreys H., Jeffreys B., Methods of mathematical physics. Cambridge: Cambridge Univ.Press, 2001, p.202.
- [2] Licis N.A., Philosophical and scientific meaning of ideas of N.I. Lobachevskii. Riga, 1976, pp. 58, 372 [in Russian].
- [3] Hughes R.J., Contemp. Phys. 1993 34 177-91.
- [4] Riemann B., Schwere, Elektricitӓt und Magnetismus. Hannover: Carl Rümpler, 1876, p. 9ff.
- [5] Gutzwiller M.C., Chaos in classical and quantum mechanics. New York: Springer, 1990, p. 101.
- [6] Kasner E., De Cicco J., PNAS USA 38 (1952) 145-148.
- [7] Einstein A., The Foundations of the General Theory of Relativity. [pp.111-164 in: H.A. Lorentz et al. The principle of relativity. Dover, New York 1923, see p.161].
- [8] Sokolnikoff I.S., Sokolnikoff E.S., Higher mathematics for engineers and physicists. New York: McGraw-Hill, 1941, p. 218.
- [9] Czajko J., Stud. Math. Sci. 7(2) (2013) 25-39.
- [10] Czajko J., Chaos, Solit. Fract. 11 (2000) 2001-2016.
- [11] Czajko J., Appl. Phys. Res. 3(1) (2011) 2-7.
- [12] Czajko J, Stud. Math. Sci. 7(2) (2013) 40-54.
- [13] Czajko J., Chaos Solit. Fract. 20 (2004) 683-700.
- [14] Birkhoff G. (Ed.) A source book in classical analysis. Cambridge, MA: Harvard Univ. Press, 1973, pp.335, 360.
- [15] Czajko J., International Letters of Chemistry, Physics and Astronomy 17(2) (2014) 220-235.
- [16] Bers L., Calculus I. New York: Holt, Rinehart and Winston, 1967, p. 216f.
- [17] Czajko J., International Letters of Chemistry, Physics and Astronomy 11(2) (2014) 89-105.
- [18] Rylov Yu.A., Sov. Phys. Dokl. 7(6) (1962) 536-538.
- [19] Mercier A., Analytical and canonical formalism in physics. Amsterdam: North-Holland, 1959, p. 122.
- [20] Mercier A., Speculative remarks on physics in general and relativity in particular. [pp.295-303 in: De Sabbata, V. & Weber, J. (Eds.) Topics in theoretical and experimental gravitation physics. London: Plenum Press, 1977].
- [21] Chow T.L., Classical Mechanics. New York: Wiley, 1995, p. 35.
- [22] Goldstein H., Poole C., Safko J., Classical mechanics. San Francisco: Addison-Wesley, 2002, p. 4ff.
- [23] Doran C., Lasenby A., Gul S., Found. Phys. 23(9) (1993) 1175-1201, see p. 1186.
- [24] Czajko J., Chaos, Solit. Fract. 21 (2004) 261-271.
- [25] Czajko J., Chaos, Solit. Fract. 21 (2004) 501-512.
- [26] Geroch R., General relativity from A to B. Chicago: The Univ. of Chicago Press, 1978, pp. 166, 171.
- [27] O‟Neill B., Semi-Riemannian geometry with applications to relativity. New York: Academic Press, 1983, p. 171.
- [28] Czajko J., Chaos, Solit. Fract. 11 (2000) 1983-1992.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fd7a056f-4706-46db-83f9-689aa9f3bfec