Warianty tytułu
Języki publikacji
Abstrakty
When constructing a new data classification algorithm, relevant quality indices such as classification accuracy (ACC) or the area under the receiver operating characteristic curve (AUC) should be investigated. End-users of these algorithms are interested in high values of the metrics as well as the proposed algorithm’s understandability and transparency. In this paper, a simple evolving vector quantization (SEVQ) algorithm is proposed, which is a novel supervised incremental learning classifier. Algorithms from the family of adaptive resonance theory and learning vector quantization inspired this method. Classifier performance was tested on 36 data sets and compared with 10 traditional and 15 incremental algorithms. SEVQ scored very well, especially among incremental algorithms, and it was found to be the best incremental classifier if the quality criterion is the AUC. The Scott–Knott analysis showed that SEVQ is comparable in performance to traditional algorithms and the leading group of incremental algorithms. The Wilcoxon rank test confirmed the reliability of the obtained results. This article shows that it is possible to obtain outstanding classification quality metrics while keeping the conceptual and computational simplicity of the classification algorithm.
Rocznik
Tom
Strony
149--165
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
autor
- Department of Control and Computer Engineering, Rzeszow University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland, sylwesterczmil@gmail.com
autor
- Department of Control and Computer Engineering, Rzeszow University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
autor
- Department of Control and Computer Engineering, Rzeszow University of Technology, Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Bibliografia
- [1] Alcalá-Fdez, J., Fernandez, A., Luengo, J. , Derrac, J. , García, S., Sanchez, L. and Herrera, F. (2011). KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework, Journal of Multiple-Valued Logic and Soft Computing 17(2-3): 255-287.
- [2] Altman, N.S. (1992). An introduction to kernel and nearest-neighbor nonparametric regression, The American Statistician 46(3): 175-185.
- [3] Banerjee, S., Bhattacharjee, P. and Das, S. (2017). Performance of deep learning algorithms vs. shallow models, in extreme conditions - Some empirical studies, in B.U. Shankar et al. (Eds), Pattern Recognition and Machine Intelligence, Springer International Publishing, Cham, pp. 565-574.
- [4] Bifet, A. and Gavaldà, R. (2009). Adaptive learning from evolving data streams, in N.M Adams et al. (Eds), Advances in Intelligent Data Analysis VIII, Springer, Berlin/Heidelberg, pp. 249-260.
- [5] Breiman, L. (2001). Random forests, Machine Learning 45(1): 5-32.
- [6] Breiman, L., Friedman, J.H., Olshen, R.A. and Stone, C.J. (1984). Classification and Regression Trees, Wadsworth International Group, Belmont.
- [7] Carpenter, G.A. and Grossberg, S. (1987). A massively parallel architecture for a self-organizing neural pattern recognition machine, Computer Vision, Graphics, and Image Processing 37(1): 54-115.
- [8] Carpenter, G.A., Grossberg, S. and Reynolds, J.H. (1991). ARTMAP: Supervised real-time learning and classification of nonstationary data by a self-organizing neural network, Neural Networks 4(5): 565-588.
- [9] Carpenter, G., Grossberg, S., Markuzon, N. , Reynolds, J.H. and Rosen, D.B. (1992). Fuzzy ARTMAP: A neural network architecture for incremental supervised learning of analog multidimensional maps, IEEE Transactions on Neural Networks 3(5): 698-713.
- [10] Chan, T.F., Golub, G.H. and LeVeque, R.J. (1979). Updating formulae and an pairwise algorithm for computing sample variances, Stanford Working Paper STAN-CS-79-773: 1-22, Stanford University, Stanford, http://i.stanford.edu/pub/cstr/reports/cs/tr/79/773/CS-TR-79-773.pdf.
- [11] Chang, C.-C. and Lin, C.-J. (2011). LIBSVM: A library for support vector machine, ACM Transactions on Intelligent Systems and Technology 2(3): 1-27.
- [12] Chen, T. and Guestrin, C. (2016). XGBoost: A scalable tree boosting system, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, pp. 785-794.
- [13] Czmil, S. (2021). Python implementation of evolving vector quantization for classification of on-line data streams (Version 0.0.2), Computer software, https://github.com/sylwekczmil/evq.
- [14] Czmil, S., Kluska, J. and Czmil, A. (2022). CACP: Classification algorithms comparison pipeline, SoftwareX 19: 101134.
- [15] Duch, W., Adamczak, R. and Diercksen, G.H.F. (2000). Classification, association and pattern completion using neural similarity based methods, International Journal of Applied Mathematics and Computer Science 10(4): 747-766.
- [16] Elsayad, A.M. (2009). Classification of ECG arrhythmia using learning vector quantization neural networks, 2009 International Conference on Computer Engineering & Systems, Cairo, Egypt, pp. 139-144.
- [17] Fernández-Delgado, M., Cernadas, E., Barro, S. and Amorim, D. (2014). Do we need hundreds of classifiers to solve real world classification problems?, Journal of Machine Learning Research 15(90): 3133-3181.
- [18] Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine, The Annals of Statistics 29(5): 1189-1232.
- [19] Galbraith, B. (2017). Adaptive resonance theory models, Computer software, https://github.com/AIOpenLab/art.
- [20] Gomes, H.M., Bifet, A., Read, J., Barddal, J.P., Enembreck, F., Pfharinger, B., Holmes, G. and Abdessalem, T. (2017). Adaptive random forests for evolving data stream classification, Machine Learning 106(9-10): 1469-1495.
- [21] Hastie, T., Rosset, S., Zhu, J. and Zou, H. (2009). Multi-class AdaBoost, Statistics and Its Interface 2(3): 349-360.
- [22] Hastie, T., Tibshirani, R. and Friedman, J. (2008). The Elements of Statistical Learning, Springer, New York.
- [23] Holte, R.C. (1993). Very simple classification rules perform well on most commonly used data sets, Machine Learning 11(1): 63-90.
- [24] Huang, J. and Ling, C.X. (2005). Using AUC and accuracy in evaluating learning algorithms, IEEE Transactions on Knowledge and Data Engineering 17(3): 299-310.
- [25] Hulten, G., Spencer, L. and Domingos, P. (2001). Mining time-changing data streams, Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’01, San Francisco, USA, pp. 97-106.
- [26] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning: With Applications in R, Springer, New York.
- [27] Kasuba, T. (1993). Simplified fuzzy ARTMAP, AI Expert 8: 18-25.
- [28] Kingma, D.P. and Ba, J. (2015). Adam: A method for stochastic optimization, Proceedings of the 3rd International Conference on Learning Representations (ICLR 2015), San Diego, USA.
- [29] Kluska, J. and Madera, M. (2021). Extremely simple classifier based on fuzzy logic and gene expression programming, Information Sciences 571: 560-579.
- [30] Kohonen, T., Schroeder, M.R. and Huang, T.S. (2001). Self-Organizing Maps, 3rd Edn, Springer-Verlag, Berlin/Heidelberg.
- [31] Kolter, J.Z. and Maloof, M.A. (2005). Using additive expert ensembles to cope with concept drift, Proceedings of the 22nd International Conference on Machine Learning (ICML-2005), Bonn, Germany, pp. 449-456.
- [32] Kolter, J.Z. and Maloof, M.A. (2007). Dynamic weighted majority: An ensemble method for drifting concepts, Journal of Machine Learning Research 8(91): 2755-2790.
- [33] Kulczycki, P. and Kowalski, P.A. (2015). Bayes classification for nonstationary patterns, International Journal of Computational Methods 12(02): 1550008.
- [34] Kusy,M. and Zajdel, R. (2021). A weighted wrapper approach to feature selection, International Journal of Applied Mathematics and Computer Science 31(4): 685-696, DOI: 10.34768/amcs-2021-0047.
- [35] Lang, K.J. and Witbrock, M.J. (1988). Learning to tell two spirals apart, The 1988 Connectionist Models Summer School, Pittsburgh, USA, pp. 52-59.
- [36] Lee, S., Chang, K. and Baek, J.-G. (2021). Incremental learning using generative-rehearsal strategy for fault detection and classification, Expert Systems with Applications 184: 115477.
- [37] Leo, J. and Kalita, J. (2022). Incremental deep neural network learning using classification confidence thresholding, IEEE Transactions on Neural Networks and Learning Systems 33(12): 7706-7716.
- [38] Lughofer, E. (2008a). Evolving vector quantization for classification of on-line data streams, 2008 International Conference on Computational Intelligence for Modelling Control & Automation (CIMCA 2008), Vienna, Austria, pp. 779-784.
- [39] Lughofer, E. (2008b). Extensions of vector quantization for incremental clustering, Pattern Recognition 41(3): 995-1011.
- [40] Luo, Y., Yin, L., Bai, W. and Mao, K. (2020). An appraisal of incremental learning methods, Entropy 22(11): 1190.
- [41] Manapragada, C., Webb, G.I. and Salehi, M. (2018). Extremely fast decision tree, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, pp. 1953-1962.
- [42] Montiel, J., Read, J., Bifet, A. and Abdessalem, T. (2018). Scikit-Multiflow: A multi-output streaming framework, Journal of Machine Learning Research 19(72): 1-5.
- [43] Oza, N.C. and Russell, S.J. (2001). Online bagging and boosting, in T.S. Richardson and T.S. Jaakkola (Eds), Proceedings of the 8th International Workshop on Artificial Intelligence and Statistics, Key West, USA, pp. 229-236.
- [44] Pedregosa, F., Varoquaux, G., Gramfort, A. Michel, V., Thirion, B., Grisel, O., Blondel, M., Müller, A., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12: 2825-2830.
- [45] Polikar, R., Upda, L., Upda, S. and Honavar, V. (2001). Learn++: An incremental learning algorithm for supervised neural networks, IEEE Transactions on Systems, Man, and Cybernetics C: Applications and Reviews 31(4): 497-508.
- [46] Pratama, M., Pedrycz, W. and Lughofer, E. (2018). Evolving ensemble fuzzy classifier, IEEE Transactions on Fuzzy Systems 26(5): 2552-2567.
- [47] Pratama, M., Pedrycz, W. and Webb, G.I. (2020). An incremental construction of deep neuro fuzzy system for continual learning of nonstationary data streams, IEEE Transactions on Fuzzy Systems 28(7): 1315-1328.
- [48] Rutkowski, L. and Cierniak, R. (1996). Image compression by competitive learning neural networks and predictive vector quantization, Applied Mathematics and Computer Science 6(3): 431-445.
- [49] Shevchuk, Y. (2015). NeuPy (Version 1.18.5), Computer software, http://neupy.com/.
- [50] Shi, X., Wong, Y.D., Li, M.Z.-F., Palanisamy, C. and Chai, C. (2019). A feature learning approach based on XGBoost for driving assessment and risk prediction, Accident Analysis & Prevention 129: 170-179.
- [51] Skubalska-Rafajlowicz, E. (2000). One-dimensional Kohonen LVQ nets for multidimensional pattern recognition, International Journal of Applied Mathematics and Computer Science 10(4): 767-778.
- [52] Sokolova, M. and Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks, Information Processing & Management 45(4): 427-437.
- [53] Stapor, K. (2018). Evaluating and comparing classifiers: Review, some recommendations and limitations, in M. Kurzynski et al. (Eds), Proceedings of the 10th International Conference on Computer Recognition Systems, CORES 2017, Springer International Publishing, Cham, pp. 12-21.
- [54] Tantithamthavorn, C., McIntosh, S., Hassan, A.E. and Matsumoto, K. (2019). The impact of automated parameter optimization on defect prediction models, IEEE Transactions on Software Engineering 45(7): 683-711.
- [55] Tibshirani, R., Hastie, T., Narasimhan, B. and Chu, G. (2002). Diagnosis of multiple cancer types by shrunken centroids of gene expression, Proceedings of the National Academy of Sciences 99(10): 6567-6572.
- [56] Trawiński, B., Smętek, M., Telec, Z. and Lasota, T. (2012). Nonparametric statistical analysis for multiple comparison of machine learning regression algorithms, International Journal of Applied Mathematics and Computer Science 22(4): 867-881, DOI: 10.2478/v10006-012-0064-z.
- [57] Vakil-Baghmisheh, M. and Pavešić, N. (2003). A fast simplified fuzzy ARTMAP network, Neural Processing Letters 17(3): 273-316.
- [58] Villuendas-Rey, Y., Rey-Benguría, C.F., Ángel Ferreira-Santiago, Camacho-Nieto, O. and Yáñez-Márquez, C. (2017). The naïve associative classifier (NAC): A novel, simple, transparent, and accurate classification model evaluated on financial data, Neurocomputing 265: 105-115.
- [59] Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization, IEEE Transactions on Evolutionary Computation 1(1): 67-82.
- [60] Żabiński, T., Maczka, T. and Kluska, J. (2017). Industrial platform for rapid prototyping of intelligent diagnostic systems, in W. Mitkowski et al. (Eds), Trends in Advanced Intelligent Control, Optimization and Automation, Springer International Publishing, Cham, pp. 712-721.
- [61] Żabiński, T., Maczka, T., Kluska, J., Kusy, M., Hajduk, Z. and Prucnal, S. (2014). Failures prediction in the cold forging process using machine learning methods, in L. Rutkowski et al. (Eds), Artificial Intelligence and Soft Computing, Springer International Publishing, Cham, pp. 622-633.
- [62] Škrjanc, I., Iglesias, J.A., Sanchis, A., Leite, D., Lughofer, E. and Gomide, F. (2019). Evolving fuzzy and neuro-fuzzy approaches in clustering, regression, identification, and classification: A survey, Information Sciences 490: 344-368.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fd745138-0147-4c32-adba-79eb15759888