Warianty tytułu
Języki publikacji
Abstrakty
In this article, we study initial and initial-boundary value problems for a non-strictly hyperbolic system whose characteristic speed is not smooth and takes values in {−1, 0, 1}. We construct an explicit formula for the weak solution.We also study the interaction of waves and the large time asymptotic behavior of a solution for the case when the initial data is periodic with zero mean over the period and also for the case when the initial data has compact support.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
219--238
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Sharadanagar, Bangalore 560065, India, abhidas@tifrbng.res.in
autor
- Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Sharadanagar, Bangalore 560065, India, ktj@tifrbng.res.in
Bibliografia
- [1] S. Albeverio and V. M. Shelkovich, On the delta-shock front problem, in: Analytical Approaches to Multidimensional Balance Laws, Nova Science, New York (2006), 45-87.
- [2] C. Bardos, A. Y. le Roux and J.-C. Nédélec, First order quasilinear equations with boundary conditions, Comm. Partial Differential Equations 4 (1979), no. 9, 1017-1034.
- [3] F. Bouchut and F. James, One-dimensional transport equations with discontinuous coefficients, Nonlinear Anal. 32 (1998), no. 7, 891-933.
- [4] A. P. Choudhury, K. T. Joseph and M. R. Sahoo, Spherically symmetric solutions of multidimensional zero-pressure gas dynamics system, J. Hyperbolic Differ. Equ. 11 (2014), no. 2, 269-293.
- [5] V. G. Danilov and V. M. Shelkovich, Dynamics of propagation and interaction of δ-shock waves in conservation law systems, J. Differential Equations 211 (2005), no. 2, 333-381.
- [6] L. C. Evans, Partial Differential Equations, Grad. Stud. Math. 19, American Mathematical Society, Providence, 1998.
- [7] D. Hoff, The sharp form of Ole˘ınik’s entropy condition in several space variables, Trans. Amer. Math. Soc. 276 (1983), no. 2, 707-714.
- [8] K. T. Joseph, A Riemann problem whose viscosity solutions contain δ-measures, Asymptotic Anal. 7 (1993), no. 2, 105-120.
- [9] K. T. Joseph, Explicit solutions for a system of first-order partial differential equations, Electron. J. Differential Equations 2008 (2008), Paper No. 157.
- [10] K. T. Joseph and G. D. Veerappa Gowda, Explicit formula for the solution of convex conservation laws with boundary condition, Duke Math. J. 62 (1991), no. 2, 401-416.
- [11] K. T. Joseph and G. D. Veerappa Gowda, The Hamilton-Jacobi equation Vt + |Vx | = 0, in the quarter plane, Nonlinear Anal. 18 (1992), no. 12, 1147-1158.
- [12] S. N. Kružkov, First order quasilinear equations in several independent variables, Math. USSR-Sbornik 10 (1970), 217-243.
- [13] P. D. Lax, Hyperbolic systems of conservation laws. II, Comm. Pure Appl. Math. 10 (1957), 537-566.
- [14] P. LeFloch, An existence and uniqueness result for two nonstrictly hyperbolic systems, in: Nonlinear Evolution Equations that Change Type, IMA Vol. Math. Appl. 27, Springer, New York (1990), 126-138.
- [15] P.-L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Res. Notes Math. 69, Pitman, Boston, 1982.
- [16] F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Comm. Partial Differential Equations 22 (1997), no. 1-2, 337-358.
- [17] A. I. Vol’pert, The spaces BV and quasilinear equations, Math. USSR-Sbornik 2 (1967), 225-267.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fd3ef165-4f11-4e3e-b432-2ff33044619f