Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2022 | No. 64 (3) | 535--547
Tytuł artykułu

The decline of Svalbard land-fast sea ice extent as a result of climate change

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Svalbard Archipelago has experienced some of the most severe temperature increases in the Arctic in the last three decades. This temperature rise has accelerated sea-ice melting along the coast of the archipelago, thus bringing changes to the local environment. In view of the importance of the near-future distribution of land-fast sea ice along the Svalbard coast, the available observation data on the ice extent between 1973 and 2018 are used herein to create a random forest (RF) model for predicting the daily ice extent and its spatial distribution according to the cumulative number of freezing and thawing degree days and the duration of the ice season. Two RF models are constructed by using either regression or classification algorithms. The regression model makes it possible to estimate the extent of land-fast ice with a root mean square error (RMSE) of 800 km2, while the classification model creates a cluster of submodels in order to forecast the spatial distribution of land-fast ice with less than 10% error. The models also enable the reconstruction of the past ice extent, and the prediction of the near-future extent, from standard meteorological data, and can even analyze the real-time spatial variability of land-fast ice. On average, the minimum two-monthly extent of land-fast sea ice along the Svalbard coast was about 12,000 km2 between 1973 and 2000. In 2005–2019, however, the ice extent declined to about 6,000 km2. A further increase in mean winter air temperatures by two degrees, which is forecast in 10 to 20 years, will result in a minimum two-monthly land-fast ice extent of about 1,500 km2, thus indicating a trend of declining land-fast ice extent in this area.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
535--547
Opis fizyczny
Bibliogr, 35 poz., map., rys., tab., wykr.
Twórcy
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • 1. Breiman, L., 2001. Random Forests. Mach. Learn. 45, 5-32.
  • 2. Cottier, F., Nilsen, F., Inall, M., Gerland, S., Tverberg, V., Svendsen, H., 2007. Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys. Res. Lett. 34 (10), 1-5. https://doi.org/10.1029/2007GL029948
  • 3. Dahlke, S., Hughes, N., Wagner, P, Gerland, S., Wawrzyniak, T., Ivanov, B., Maturilli, M., 2020. The observed recent surface air temperature development across Svalbard and concurring footprints in local sea ice cover. Int. J. Climatol. 40, 5246-5265. https://doi.org/10.1002/joc.6517
  • 4. Førland, E., Benestad, R., Hanssen-Bauer, I., Haugen, J., Skaugen, T., 2011. Temperature and Precipitation Development at Svalbard 1900 -2100. Adv. Meteorol. 2011. https://doi.org/10.1155/2011/893790
  • 5. Frederick, J.M., Thomas, M.A., Bull, D.L., Jones, C.A., Roberts, J.D., 2016, The Arctic Coastal Erosion Problem, Sandia Report, SAND2016-9762, 122 pp.
  • 6. Georganos, S., Grippa, T., Niang Gadiaga, A., Linard, C., Lennert, M., Vanhuysse, S., Mboga, N., Wolff, E., Kalogirou, S., 2019. Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling. Geocarto Int. 36 (2), 1-16. https://doi.org/10.1080/10106049.2019.1595177
  • 7. Gerland, S., Hall, R., 2006. Variability of fast-ice thickness in Spitsbergen fjords. Ann. Glaciol. 44 (9296), 231-239. https://doi.org/10.3189/172756406781811367
  • 8. Gerland, S., Renner, A.H.H., 2007. Sea-ice mass-balance monitoring in an Arctic fjord. Ann. Glaciol. 46 (9296), 435-442. https://doi.org/10.3189/172756407782871215
  • 9. Gerland, S., Renner, A.H.H., Godtliebsen, F., Divine, D., Løyning, T.B., 2008. Decrease of sea ice thickness at Hopen, Barents Sea, during 1966-2007. Geophys. Res. Lett. 35 (6), 1-5. https://doi.org/10.1029/2007GL032716
  • 10. Hanssen-Bauer, I., Førland, E. J., Hisdal, H., Mayer, S., Sandø, A. B., Sorteberg, A., Adakudlu, M., Andresen, J., Bakke, J., Beldring, S., Benestad, R., Bilt, W., Bogen, J., Borstad, C., Breili, K., Breivik, Ø., Børsheim, K. Y., Christiansen, H. H., Dobler, A., Engeset, R., Frauenfelder, R., Gerland, S., Gjelten, H. M., Gundersen, J., Isaksen, K., Jaedicke, C., Kierulf, H., Kohler, J., Li, H., Lutz, J., Melvold, K., Mezghani, A., Nilsen, F., Nilsen, I. B., Nilsen, J. E. Ø., Pavlova, O., Ravndal, O., Risebrobakken, B., Saloranta, T., Sandven, S., Schuler, T. V, Simpson, M. J. R., Skogen, M., Smedsrud, L. H., Sund, M., Vikhamar-Schuler, D., Westermann, S., Wong, W. K. 2019. Climate in Svalbard 2100, 1/2019, [online]. Available from: https://www.miljodirektoratet.no/globalassets/publikasjoner/M1242/M1242.pdf
  • 11. Isaksen, K., Nordli, Ø., Førland, E.J., Łupikasza, E., Eastwood, S., 2016. Recent warming on Spitsbergen—Influenceof atmospheric circulation and sea ice cover. J. Geophys. Res. Atmos. 121, 11,913-11,931. https://doi.org/10.1002/2016JD025606
  • 12. Johansson, A.M., Malnes, E., Gerland, S., Cristea, A., Doulgeris, A.P., Divine, D.V., Pavlova, O., Lauknes, T.R., 2020. Consistent ice and open water classification combining historical synthetic aperture radar satellite images from ERS-1/2, Envisat ASAR, RADARSAT-2 and Sentinel-1A/B. Ann. Glaciol. 61 (82), 1-11. https://doi.org/10.1017/aog.2019.52
  • 13. King, J., Spreen, G., Gerland, S., Haas, C., Hendricks, S., Kaleschke, L., Wang, C., 2017. Sea-ice thickness from field measurements in the northwestern Barents sea. J. Geophys. Res.-Oceans 122 (2), 1497-1512. https://doi.org/10.1002/2016JC012199
  • 14. Krafft, B.A., Kovacs, K.M., Andersen, M., Aars, J., Lydersen, C., Ergon, T., Haug, T., 2006. Abundance of ringed seals (Pusa hispida) in the fjords of Spitsbergen, Svalbard, during the peak molting period. Mar. Mammal Sci. 22 (2), 394-412. https://doi.org/10.1111/j.1748-7692.2006.00035.x
  • 15. Leppäranta, M., 1993. A review of analytical models of sea-ice growth. Atmos.- Oceans 31 (1), 123-138. https://doi.org/10.1080/07055900.1993.9649465
  • 16. Leppäranta, M., 2014. Freezing of Lakes and the Evolution of their Ice Cover. Springer-Praxis, Heidelberg, 301 pp. https://doi.org/10.1007/978- 3- 642- 29081- 7
  • 17. Lutz, S.R., Krieg, R., Müller, C., Zink, M., Knöller, K., Samaniego, L., Merz, R., 2018. Spatial Patterns of Water Age: Using Young Water Fractions to Improve the Characterization of Transit Times in Contrasting Catchments. Water Resour. Res. 54 (7), 4767-4784. https://doi.org/10.1029/2017WR022216
  • 18. McClelland, J.W., Holmes, R.M., Dunton, K.H., Macdonald, R.W., 2012. The Arctic Ocean Estuary. Estuar. Coast. 35, 353-368. https://doi.org/10.1007/s12237-010-9357-3
  • 19. Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S. A. and R. Ray, R.S. Vose, B.E. Gleason, Houston, T. G. 2012. Global Historical Climatology Network — Daily (GHCN-Daily), Version 3.
  • 20. Muckenhuber, S., Nilsen, F., Korosov, A., Sandven, S., 2016. Sea ice cover in Kongsfjorden and Hornsund, Svalbard (2000-2014) from remote sensing data. Cryosphere 10 (1), 149-158. https://doi.org/10.5194/tc- 10- 149- 2016
  • 21. Mutanga, O., Adam, E., Cho, M.A., 2012. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. Int. J. Appl. Earth
  • 22. Obs. Geoinf. 18, 399-406. https://doi.org/10.1016/j.jag.2012.03.012
  • 23. Nordli, Ø., Przybylak, R., Ogilvie, A.E.J., Isaksen, K., 2014. Long-term temperature trends and variability on spitsbergen: The extended svalbard airport temperature series, 1898-2012. Polar Res. 33 (1 SUPPL). https://doi.org/10.3402/polar.v33.21349
  • 24. Nordli, Ø., Wyszy ́nski, P., Cjelten, H.M.J., Isaksen, K., Łupikasza, E., Nied ́zwied ́z, T., 2020. Revisiting the extended Svalbard Airport monthly temperature series, and the compiled corresponding daily series 1898-2018. Polar Res. 39. https://doi.org/10.33265/polar.v39.3614
  • 25. Pavlova, O., Gerland, S., Hop, H., 2019. Changes in Sea-Ice Extent and Thickness in Kongsfjorden, Svalbard (2003—2016). In: Hop, H., Wiencke, C. (Eds.), The Ecosystem of Kongsfjorden, Svalbard. Advances in Polar Ecology, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-46425-1_4
  • 26. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., rettenhofer, P., Weiss, R., Doubourg, V., Vaderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E., 2011. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 12, 2825-2830.
  • 27. Rodriguez-Galiano, V., Mendes, M.P., Garcia-Soldado, M.J., Chica-Olmo, M., Ribeiro, L., 2014. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (Southern Spain). Sci. Total Environ. 476—477, 189-206. https://doi.org/10.1016/j.scitotenv.2014.01.001
  • 28. Rodriguez-Galiano, V., Sanchez-Castillo, M., Chica-Olmo, M., Chica-Rivas, M., 2015. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 71, 804-818. https://doi.org/10.1016/j.oregeorev.2015.01.001
  • 29. Smith, T.G., Lydersen, C., 1991. Availability of suitable land-fast ice and predation as factors limiting ringed seal populations, Phoca hispida, in Svalbard. Polar Res. 10 (2), 585-594. https://doi.org/10.1111/j.1751-8369.1991.tb00676.x
  • 30. Sundfjord, A., Albretsen, J., Kasajima, Y., Skogseth, R., Kohler, J., Nuth, C., Skarðhamar, J., Cottier, F., Nilsen, F., Asplin, L., Gerland, S., Torsvik, T., 2017. Effects of glacier runoff and wind on surface layer dynamics and Atlanticwater exchange in Kongs-fjorden, Svalbard; a model study. Estuar. Coast. Shelf Sci. 187, 260-272.
  • 31. Wang, C., Shi, L., Gerland, S., Granskog, M.A., Renner, A.H.H., Li, Z., Hansen, E., Martma, T., 2013. Spring sea-ice evolution in Rijpfjorden (80°N), Svalbard, from in situ measurements and ice mass-balance buoy (IMB) data. Ann. Glaciol. 54 (62), 253-260. https://doi.org/10.3189/2013AoG62A135
  • 32. Wang, C., Cheng, B., Wang, K., Gerland, S., Pavlova, O., 2015. Modelling snow ice and suoerimposed ice on landfastsea ice in Kongsfjorden, Svalbard. Polar. Res. 34, 20828. https://doi.org/10.3402/polar.v34.20828
  • 33. Yu, Y., Fowler, C., Fetterer, F., Maslanik, J., 2014. Interannual Variability of Arctic Landfice Ice between 1976 and 2007. J. Clim. 27 (1), 227-243. https://doi.org/10.1175/JCLI-D-13-00178.1
  • 34. Zakhvatkina, N., Smirnov, V., Bychkova, I., 2019. Satellite SAR data-based sea ice classification. An overview. Geosci. 9 (4), 3-5. https://doi.org/10.3390/geosciences9040152
  • 35. Zhuravskiy, D., Ivanov, B., Pavlov, A., 2012. Ice conditions at Gronfjorden Bay, Svalbard, from 1974 to 2008. Polar Geogr. 35 (2), 169-176. https://doi.org/10.1080/1088937X.2012.662535
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fd2fb563-c4a4-4b45-bb1d-9bbd1c30966f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.