Warianty tytułu
Języki publikacji
Abstrakty
The standard recommended atmospheric gravity correction is based on the International Association of Geodesy (IAG) approach. This correction introduced into the results of gravimetric measurements reduces, in a simplified way, the influence of the actual atmospheric masses and the atmospheric masses contained inside a reference ellipsoid from the determined gravity anomalies or disturbances. Model of the actual atmosphere used in the IAG approach does not take into account topography as the lower boundary of the atmosphere, assuming that the atmosphere consists of spherical, constant density layers. In this study, we determined and analysed the components of atmospheric gravity correction for the area of Poland and its surroundings, considering topography as the lower limit of the atmosphere. In the calculations, we used algorithms typical for determining the topographic gravity reduction, assuming a model of atmospheric density based on the United States Standard Atmosphere 1976 model. The topography-bounded gravity atmospheric correction values determined were within the limits of 0.748-0.886 mGal and were different from standard, approximate atmospheric correction values in the range of 0.011 mGal for points at the sea level up to 0.105 mGal for points located at an altitude of approximately 2600 m.
Słowa kluczowe
Rocznik
Tom
Strony
64--76
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wroclaw, Poland, marek.trojanowicz@upwr.edu.pl
autor
- studentka, Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wroclaw, Poland, 111179@student.upwr.edu.pl
autor
- studentka, Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, 50-375 Wroclaw, Poland, 111175@student.upwr.edu.pl
Bibliografia
- Anderson E. G. (1976) The effect of topography on solutions of Stokes’s problem. UNISURV Report S14, University of New South Wales, Kensington, Australia.
- Anderson E. G., Rizos C., Mather R. S. (1975) Atmospheric effects in physical geodesy. UNISURV Report G23, University of New South Wales, Kensington, Australia.
- Ecker E., Mittermayer E. (1969) Gravity corrections for the influence of the atmosphere. Bulletin of Theoretical and Applied Geophysics 11, 70-80.
- Heck B., Seitz K. (2007) A comparison of the tesseroid, prism and pointmass approaches for mass reductions in gravity field modelling. Journal of Geodesy 81(2),121-136.
- Hinze W. J., Aiken C., Brozena J., Coakley B., Dater D., Flanagan G., Forsberg R., Hildenbrand T., Keller G. R., Kellogg J., Kucks R., Li X., Mainville A., Morin R., Pilkington M., Plouff D., Ravat D., Roman D., Urrutia-Fucugauchi J., Véronneau M., Webring M., Winester D. (2005) New standards for reducing gravity data: The North American gravity database. Geophysics 70, J25-J32.A.
- Jarvis A., Reuter H. I., Nelson A., Guevara, E. (2008) Hole-filled SRTM for the globe Version 4. The CGIAR-CSI SRTM 90m Database (http://srtm.csi.cgiar.org).
- Mikuška J., Marušiak I., Pašteka R., Karcol R., Beňo J. (2008) The effect of topography in calculating the atmospheric correction in gravimetry. SEG Las Vegas Annual Meeting, SEG Technical Program Expanded Abstracts, 784-788.
- Mikuška J., Pašteka R., Marušiak I. (2006) Estimation of distant relief effect in gravimetry. Geophysics 71, J59-J69.
- Moritz H. (1980) Geodetic Reference System 1980. Journal of Geodesy, 54, 395-405.
- Nagy D., Papp G., Benedek J. (2000) The gravitational potential and its derivatives for the prism. Journal of Geodesy, 74, 552-560.
- Nahavandchi H. (2004) A new strategy for the atmospheric gravity effect in gravimetric geoid determination. Journal of Geodesy 77, 823-828.
- NIMA Agency (2000) TR8350.2, Third Edition, Amendment 1, January 3, 2000: e-report, accessed in 2004 to 2006.
- NOAA National Geophysical Data Center (2009) ETOPO1 1 Arc-Minute Global Relief Model. NOAA National Centers for Environmental Information.
- Novák P., Grafarend E. W. (2005) The effect of topographical and atmospheric masses on spaceborne gravimetric and gradiometric data. Stud. Geophys. Geod., 50, 549-582.
- Sjöberg L. E. (1993) Terrain effects in the atmospheric gravity and geoid correction. Bulletin Géodesique, 64, 178-184.
- Sjöberg L. E. (1998) The atmospheric geoid and gravity corrections. Bollettino di geodesia e scienze affini., N4.
- Sjöberg L. E. (1999) The IAG approach to the atmospheric geoid correction in Stokes’ formula and a new strategy. Journal of Geodesy, 73, 362-366.
- Sjöberg L. E., Nahavandchi H. (2000) The atmospheric geoid effects in Stokes formula. Geophysical Journal Internationa,l 140, 95-100.
- Tenzer R., Mikuška J., Marušiak I., Pašteka R., Karcol R., Vajda P., Sirguey P. (2010) Computation of the atmospheric gravity correction in New Zealand. New Zealand Journal of Geology and Geophysics, 53:4, 333-340.
- Tenzer R., Novák P., Moore P., Vajda P. (2006) Atmospheric effects in the derivation of geoidgenerated gravity anomalies. Studia Geophysica and Geodaetica 50, 583-593.
- Tenzer R., Vajda P., Hamayun, (2009) Global atmospheric corrections to the gravity field quantities. Contributions to Geophysics & Geodesy 39(3), 221-236.
- Torge W. (1989) Gravimetry. Walter de Gruyter Publishing Co.
- Wenzel H. (1985) Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde. Wissenschaftliche arbeiten der Fachrichtung Vermessungswesen der Universität Hannover 137, 1-155.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fd1444d7-4778-4977-93a1-4837142b415d