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ABSTRACT. The standard recommended atmospheric gravity correction is based on the 

International Association of Geodesy (IAG) approach. This correction introduced into the 

results of gravimetric measurements reduces, in a simplified way, the influence of the actual 

atmospheric masses and the atmospheric masses contained inside a reference ellipsoid from the 

determined gravity anomalies or disturbances. Model of the actual atmosphere used in the IAG 

approach does not take into account topography as the lower boundary of the atmosphere, 

assuming that the atmosphere consists of spherical, constant density layers. In this study, we 

determined and analysed the components of atmospheric gravity correction for the area of 

Poland and its surroundings, considering topography as the lower limit of the atmosphere. In 

the calculations, we used algorithms typical for determining the topographic gravity reduction, 

assuming a model of atmospheric density based on the United States Standard Atmosphere 

1976 model. The topography-bounded gravity atmospheric correction values determined were 

within the limits of 0.748–0.886 mGal and were different from standard, approximate 

atmospheric correction values in the range of 0.011 mGal for points at the sea level up to 0.105 

mGal for points located at an altitude of approximately 2600 m.  

Keywords: atmospheric correction, atmospheric density, gravity correction 

1. INTRODUCTION 

The masses of the currently used reference ellipsoids (GRS80 or WGS84), which are models 

of the Earth's gravity field, also include the masses of Earth's entire atmosphere (Moritz, 1980; 

NIMA Agency, 2000). This means that the values of normal gravity also include a component 

resulting from all masses of the atmosphere shifted inside the ellipsoid. The atmospheric 

component of the actual gravity at any point located on the terrain surface (assuming that above 

the analysed point, the atmosphere consists of spherical, constant density layers) contains only 

the atmospheric masses lying below this point (e.g. Torge, 1989). To take into account 

differences in the influence of atmospheric masses on normal and actual gravity, it is 

recommended to introduce a gravitational atmospheric correction (Moritz, 1980; Hinze et al., 

2005). This correction is small, but significantly higher than the measurement accuracy of 

currently used gravimeters, and it is normally determined by the so-called International 
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Association of Geodesy (IAG) method based on the following approximate equation (Hinze et 

al., 2005): 

𝛿𝑔atm = 0.874 − 9.9 × 10−5ℎ + 3.56 × 10−9ℎ2 (1)

where ℎ is the height of the point in metres and the correction result is in milligals.  

The correction (Eq. 1) added to the measured gravity increases its value by the influence of 

atmospheric masses contained within the reference ellipsoid and reduces it by the influence of 

a simplified model of the actual atmospheric masses. Eq. (1) was given by Wenzel (1985) based 

on the concept proposed by Ecker and Mittermayer (1969). This concept assumes that the 

atmospheric masses constitute spherical homogeneous layers extending from the surface of the 

sphere as the lower boundary. Atmospheric corrections to gravity and geoid, which take into 

account the topographic surface as the lower surface of the atmosphere on a global scale, were 

first estimated by Anderson et al. (1975) and Anderson (1976). This approach was later 

extensively studied in various contexts. Sjöberg (1993) estimated a gradient of influence of 

atmospheric masses on gravity at the level of 0.05 mGal/km. Sjöberg (1998, 1999) and Sjöberg 

and Nahavandchi (2000) investigated the atmospheric gravity effect in Stokes’ formula, 

delivering formulas for the direct atmospheric gravity and geoid effects based on spherical 

harmonic representation of the topography. This approach was than improved by Nahavandchi 

(2004) by including local topography in the calculations. The effect of atmospheric masses for 

the Stokes’ problem was also discussed by Tenzer et al. (2006). The authors determined the 

direct and secondary indirect atmospheric effects for the area of Canada. Novak and Grafarend 

(2005) analysed the effect of atmospheric masses on spaceborne observables of the geopotential 

gradient vector and gravity gradient tensor. The atmospheric effects on the gravity field 

quantities at a global scale were determined by Tenzer et al. (2009). The authors used the 

expressions for spectral analysis of a gravitational field. In turn, Mikuška et al. (2008) 

demonstrated in several examples the importance of topography for the determined atmospheric 

gravity corrections. A detailed analysis of the gravitational effect of the topography-bounded 

atmosphere in New Zealand was carried out by Tenzer et al. (2010). The authors used the 

calculation approach based on an analytical integration procedure described in detail by 

Mikuška et al. (2006). The values of the gravitational effect of the topography-bounded 

atmosphere that they determined varied from −0.009 mGal (offshore) up to 0.203 mGal for 

the highest peak. They also compared their results with the IAG approach and showed 

differences more than 0.1 mGal. 

The main goal of this study is to conduct analyses analogous to Tenzer et al. (2010) for a 

different type of terrain and using a slightly different approach. In our analyses, the topography-

bounded atmospheric gravity corrections were calculated using procedures known for 

topographic reduction of the gravity. 

2. METHODOLOGY AND DATA  

2.1. The Approach 

The atmospheric correction (Eq. 1) is the difference of two components. The first is the normal 

gravity component defined by the atmospheric masses contained within the reference ellipsoid 

(the normal gravity component 𝑔𝑁𝐴), which can be defined as (e.g. Sjöberg, 1993): 

𝑔𝑁𝐴 =
𝐺𝑀𝑎

𝑟2
 (2)

where 𝐺 is Newton’s gravitational constant, 𝑀𝑎 is the mean mass of the Earth’s atmosphere 

and 𝑟 is the geocentric radius of the computation point. 
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The second component (spherical atmospheric component 𝑔𝑆𝐴) is determined by the 

atmospheric masses constituting spherical, homogeneous layers extending from the surface of 

the reference sphere as the lower boundary, and it can be written as 

𝑔𝑆𝐴 =
𝐺𝑀(𝑟−𝑅)

𝑟2
 (3)

where 𝑀(𝑟−𝑅) denotes the sum of the masses of homogeneous, spherical layers of the 

atmosphere located between the reference sphere of the radius 𝑅 and the computation point.  

Hence, in general, we will define Eq. (1) as 

𝛿𝑔atm = 𝑔𝑁𝐴 − 𝑔𝑆𝐴 (4)

If topography is adopted as the lower boundary of the atmosphere, the gravity effect of 

atmospheric masses (𝑔𝐸𝑇𝐴) will be defined as (Figure 1) 

𝑔ETA = −
𝜕𝑉ETA

𝜕𝑟
 (5)

where

𝑉ETA = 𝐺 ∭
𝜌𝐴

𝑙
𝑑𝑉Ω

 

Ω

 (6)

In Eq. (6), Ω is the volume of integration, 𝜌𝐴 is the atmosphere density distribution function, 𝑙 
is the distance between the attracting masses and the attracted point and 𝑑𝑉Ω is the element of 

volume. The Ω volume covers the masses of the atmosphere from the surface of the topography 

to a height at least equal to the highest mountain peaks. 

Alternatively, the 𝑔ETA component can be determined from the difference (Mikuška et al., 

2008) 

𝑔ETA = 𝑔𝑆𝐴 − 𝑔𝑇𝐴 (7)

where 𝑔𝑇𝐴 is the topographic–atmospheric correction equal to the gravity of all Earth 

topography, assuming its density is equal to the density of the atmospheric masses (Figure 1): 

𝑔𝑇𝐴 = −
𝜕𝑉𝑇𝐴

𝜕𝑟
 (8)

where 

𝑉𝑇𝐴 = 𝐺 ∭
𝜌𝐴

𝑙
𝑑𝑉Θ

 

Θ

 (9)

In Eq. (9), Θ represents the volume of all Earth topography. 
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Figure 1. The Ω and Θ volumes adopted to determine the 𝑔ETA component 

Now, the topography-bounded atmospheric correction will be defined as 

𝛿𝑔atm
ETA = 𝑔𝑁𝐴 − 𝑔ETA (10)

Let us note that taking into account the computational costs, determining the 𝑔ETA component 

according to Eq. (7) is more advantageous than according to Eq. (5) due to the much smaller 

integration domain (in areas of seas and oceans, there is no topography, so they can be omitted). 

For this reason, we used it in further investigations. 

The method of determination of Eq. (8) depends on the assumptions made regarding the 

coordinate system, available digital elevation model (DEM) and the atmospheric density 

distribution model. Assuming a spherical, geocentric coordinate system, DEM will be defined 

as a regular grid of spherical tesseroids. 

By assigning each tesseroid a constant density 𝜌𝐴
𝑖 , the 𝑔𝑇𝐴 component can be determined based 

on 

𝑔𝑇𝐴 = ∑ 𝛿𝑔𝑖

𝑛

𝑖=1

 (11)

In Eq. (11), 𝑛 is the number of tesseroids used in the calculations and 𝛿𝑔𝑖 is the component of 

gravity determined based on a single tesseroid defined as (Heck and Seitz 2007) 

𝛿𝑔𝑖 = 𝐺𝜌𝐴
𝑖 ∫ ∫ ∫

(𝑟 − 𝑟′cos𝜓)𝑟′2
cos𝜑′

𝑙3
𝑑𝑟′𝑑𝜑′𝑑𝜆′

𝑟2
𝑖

𝑟1
𝑖

𝜑2
𝑖

𝜑1
𝑖

𝜆2
𝑖

𝜆1
𝑖

 (12)

where 𝜑′, 𝜆′ and 𝑟′ are coordinates of the running integration point; 𝜆1
𝑖 , 𝜆2

𝑖 , 𝜑1
𝑖 , 𝜑2

𝑖 , 𝑟1
𝑖 and 𝑟2

𝑖 

are the coordinates defining thesseroid 𝑖 of DEM and 𝜓 is the angle between the computation 

point (with coordinates 𝜑, 𝜆, 𝑟) and the running point: 

cos𝜓 = sin 𝜑 sin 𝜑′ + cos 𝜑 cos 𝜑′ cos(𝜆′ − 𝜆) (13)

Because there is no solution of the integral in Eq. (12) and the area of integration is very large 

and includes very distant masses, the 𝛿𝑔𝑖 components were determined using three 
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approximations. In the immediate vicinity of the calculation point (up to 5 km), tesseroids were 

replaced by rectangular prisms of the same mass, for which a closed solution of the appropriate 

integral is known (Nagy et al., 2000). For tesseroids located further away (5 − 500 km), we 

used the approximate solution of the integral in Eq. (12) in the form proposed by Heck and 

Seitz (2007). For further masses, tesseroids were replaced by point masses located in their 

centres. 

Due to changes of atmospheric density in the vertical direction, determination of the 𝑔𝑇𝐴 

component will also require vertically dividing individual DEM blocks into segments of 

appropriate height. 

2.2. The Atmosphere Model  

The United States Standard Atmosphere 1976 model (USSA76) was used to estimate the 

density of the atmosphere, 𝜌𝐴
𝑖 , needed to implement Eq. (12). Based on the tabular values 

included in model USSA76, an analytical model was determined using the least squares method 

in the form: 

𝜌𝐴(𝐻) = ∑ 𝑎𝑖𝐻
𝑖

4

𝑖=0

 (14)

where 𝜌𝐴 is determined in kg m3⁄ , 𝐻 is the height in metres and 𝑎𝑖 is a coefficient given in 

Table 1. 

Table 1. The coefficients of model (Eq. 14) used in the calculations 

Coefficient Value 

𝑎0 1.22499986 

𝑎1 −1.17606554 × 10−4 

𝑎2 4.32023892 × 10−9 

𝑎3 −7.34343434 × 10−14 

𝑎4 5.18648018 × 10−19 

Based on the model (Eq. 14) and assuming 𝐻 = 𝑟 − 𝑅, the 𝑀(𝑟−𝑅) value can be written as the 

integral: 

𝑀(𝑟−𝑅)(𝐻) = 4𝜋 ∫ (𝑅 + 𝐻)2𝜌𝐴(𝐻)𝑑𝐻 =
𝐻

0

4𝜋 ∫ (𝑅 + 𝐻)2 (∑ 𝑎𝑖𝐻
𝑖

4

𝑖=0

) 𝑑𝐻
𝐻

0

 (15)

Its solution is given in the form: 

𝑀(𝑟−𝑅)(𝐻) = 4𝜋 (∑ 𝑠𝑖

4

𝑖=0

) (16)

where: 

 𝑠0 = 𝑎0𝐻 (𝑅2 + 𝑅𝐻 +
1

3
𝐻2); 

 𝑠1 = 𝑎1𝐻2 (
1

2
𝑅2 +

2

3
𝑅𝐻 +

1

4
𝐻2);  
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 𝑠2 = 𝑎2𝐻3 (
1

3
𝑅2 +

1

2
𝑅𝐻 +

1

5
𝐻2); 

𝑠3 = 𝑎3𝐻4 (
1

4
𝑅2 +

2

5
𝑅𝐻 +

1

6
𝐻2);  

 𝑠4 = 𝑎4𝐻5 (
1

5
𝑅2 +

1

3
𝑅𝐻 +

1

7
𝐻2). 

Eq. (16) allows determining the exact values of the 𝑔𝑆𝐴 component (Eq. 3), taking into account 

vertical atmospheric density changes in form of the model given by Eq. (14). 

As delineated in the preceding section, owing to variations in atmospheric density along the 

vertical, the computation of the 𝑔𝑇𝐴 component according to Eqs (11) and (12), also requires 

the vertical partitioning of each individual DEM block into segments of suitable heights and 

constant density. To assess the vertical resolution of such segmentation, we will use the 𝑔𝑆𝐴 

component, whose exact values can be determined. Let us note that the 𝑔𝑆𝐴 component (Eq. 3) 

can also be represented in an approximate form through the division of the atmosphere into m 

homogenous layers characterised by constant density and altitude. The 𝑀(𝑟−𝑅) value can, 

therefore, be expressed in the following form: 

𝑀(𝑟−𝑅)(𝑟) ≅
4

3
𝜋 ∑ 𝜌𝐴

𝑗
(𝑟𝑗+1

3 − 𝑟𝑗
3)

𝑚−1

𝑗=1

 (17)

where 𝑟𝑗 = 𝑅 + 𝑑ℎ × (𝑗 − 1), 𝑑ℎ =
𝑟−𝑅

𝑚
 is the height of a single layer and 𝜌𝐴

𝑗
 is the density of 

the atmosphere in the middle of the height of the layer 𝑗 determined on the basis of Eq. (14). 

The error in determining the 𝑔𝑆𝐴 component caused by using the approximate 𝑀(𝑟−𝑅) value 

defined by Eq. (17) instead of the exact value provided by Eq. (16) can be estimated by 

considering the difference: 

𝛿𝑔𝑆𝐴 = 𝑔approx
𝑆𝐴 − 𝑔exact

𝑆𝐴  (18)

where 𝑔approx
𝑆𝐴  and 𝑔exact

𝑆𝐴  represent the 𝑔𝑆𝐴 components determined using the 𝑀(𝑟−𝑅) values in 

their approximate form (Eq. 17) and exact form (Eq. 16), respectively. 

To estimate the 𝛿𝑔𝑆𝐴 errors for different 𝑑ℎ, the 𝑔approx
𝑆𝐴  values were determined using Eqs (3) 

and (17) for one point situated at a height of 2,500 m (the highest point in the area of Poland) 

and for another point situated at a height of 8,500 m (the highest point on the Earth). Similarly, 

using Eqs. (3) and (16), the 𝑔𝑒𝑥𝑎𝑐𝑡
𝑆𝐴  values were determined for the same points. The determined 

𝛿𝑔𝑆𝐴 values are presented in Figure 2. 
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Figure 2. The 𝛿𝑔𝑆𝐴 values for points with 𝐻𝑝 = 2,500 m (red line) and 𝐻𝑝 = 8,500 m (black line). 

The symbols in both charts indicate the 𝑑ℎ values for which the calculations were performed. 

Initially, it is noteworthy that the 𝛿𝑔𝑆𝐴 error values are almost equal to 0 for 𝑑ℎ ≤ 100 m (in 

both analysed cases), whereas for 𝑑ℎ > 100 m, they are noticeably larger for the point located 

at a higher elevation. This indicates that for points with heights lower than those examined, the 

𝛿𝑔𝑆𝐴 errors will not exceed the levels depicted in Figure 2. For instance, for points situated 

within the geographic boundaries of Poland (not exceeding 2,500 m in altitude), assuming 𝑑ℎ =
500 m, the 𝑔approx

𝑆𝐴  component can be computed with the 𝛿𝑔𝑆𝐴 errors not exceeding 0.02 μGal 

(as depicted by the red graph). Whereas, for locations not exceeding 8,500 m in elevation (i.e. 

points on the Earth's surface), the 𝛿𝑔𝑆𝐴 errors may ascend to 0.05 μGal (as indicated by the 

black graph). Given that our calculations maintain an accuracy of approximately 1 μGal, such 

discrepancies remain within acceptable bounds.  

The above discussed 𝑔𝑆𝐴 component errors also mirror those of the 𝑔𝑇𝐴 component, determined 

with the same vertical division of tesseroids constituting DEM. These errors will be equal if the 

topography consists of layers with constant heights (either 2,500 or 8,500 m, respectively). 

Consequently, the ascertained 𝛿𝑔𝑆𝐴 errors for a height of 8,500 m can be considered the 

maximum errors in determining the 𝑔𝑇𝐴 component (for any point on the Earth's surface), 

resulting from the need to take into account changes in atmospheric density in the vertical 

direction by dividing tesseroids that constitute DEM into segments with constant of both 

atmospheric density and 𝑑ℎ values. Considering the topography in the study area is generally 

lower overall, with the highest mountains situated at considerable distances, covering only a 

fraction of the Earth's surface, the error resulting from adopting 𝑑ℎ = 500 m for the vertical 

tesseroids division will be substantially lower than the 0.05 μGal pointed above. Hence, 𝑑ℎ =
500 m was selected to compute the 𝑔𝑇𝐴 component. Naturally, the 𝑔𝑆𝐴 component was 

determined in its exact version, based on Eqs (3) and (16). 

2.3. The Study Area and DEM 

The calculations were based on two DEMs: the SRTM v4.1 (3′′ × 3′′ model) (Jarvis et al. 2008) 

and the ETOPO1 (1′ × 1′ model) (NOAA National Geophysical Data Center 2009). Based on 

these models, five sets of DEM were prepared and directly used in the calculations for various 

distances from the calculation point: 

• 3′′ × 3′′ - model for calculations at a distance of up to approximately 10 km; 

• 15′′ × 15′′- model for calculations at a distance of approximately 10 − 50 km; 
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• 30′′ × 30′′- model for calculations at a distance of approximately 50 − 167 km; 

• 1′ × 1′- model for calculations at a distance of approximately 167 − 500 km; 

• 6′ × 6′- model for calculations carried out for topographic masses located further than 

500 km. 

The primary study area was located between parallels 48.4° − 55.1° and meridians 13.7° −
24.5° (Figure 3a). For this area, the calculations were performed for a regular grid of points 

with a resolution of 93″ × 90″. The area is mostly lowland. In the north, it covers a part of the 

Baltic Sea and in the south, it covers the Carpathian Mountains and the Sudetes (in the 

southwest). The highest region in the analysed area is the Tatra Mountains, with peaks reaching 

2,499 m (Rysy) for the Polish part and 2,655 m (Gerlach) for the Slovak part of the Tatra 

Mountains. For part of the Tatra Mountains, marked in Figure 3a with a red rectangle, 

calculations were performed in a grid of points with a resolution of 12″ × 9″. This area is shown 

in Figure 3b. 

 

Figure 3. Relief maps of the study areas for a) the whole areas of elaboration  

and b) the Tatra mountains 

3. RESULTS OF THE ANALYSES 

First, the components 𝑔𝑇𝐴, 𝑔𝑆𝐴 and 𝑔ETA were determined. The statistics of these values are 

presented in Table 2. 

Table 2. The statistics of the determined components of atmospheric gravity correction (mGal) 

 𝐦𝐢𝐧 𝐦𝐚𝐱 𝐦𝐞𝐚𝐧 𝐬𝐭 𝐝𝐞𝐯 

𝒈𝑻𝑨 0.012 0.108 0.033 0.019 

𝒈𝑺𝑨 0.000 0.233 0.042 0.040 

𝒈𝐄𝐓𝐀 −0.012 0.125 0.009 0.021 

All these components are strongly correlated with the height of the calculation point. These 

correlations are presented in Figure 4. Note that the 𝑔𝑇𝐴 component and, consequently, the 

𝑔ETA component depend not only on the height of the point, but also on the topography of its 

surroundings. This can be seen in the discrepancies in components for points of the same 

heights. 
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Figure 4. The correlation between the height of computation points and the values of 𝑔𝑇𝐴 – navy blue, 

𝑔𝑆𝐴 – green and 𝑔ETA – red 

Component 𝑔ETA, according to Eq. (7), is the difference of the two other components. The 

horizontal distribution of this component is shown in Figure 5. 

 

Figure 5. The 𝑔ETA component: a) for the whole area of elaboration and b) for the Tatra mountains 

The values of the 𝑔ETA component are negative at points located on the sea surface (the lowest 

value was −0.012 mGal) and in low-altitude areas, up to approximately 220 m (Figure 4). For 

higher areas, the value is positive and reaches a value of 0.125 mGal for points with heights of 

2600 m. As can be seen in Figure 5a and b, the values of this component reflect the topography 

of the area in detail. 

Based on Eqs (1) and (10), the approximate (𝛿𝑔atm) and topography-bounded (𝛿𝑔atm
ETA) 

atmospheric corrections were respectively determined. These values were compared to each 

other. Statistics of the corrections and the differences, as defined in the following equation: 

Δ𝛿𝑔atm = 𝛿𝑔atm − 𝛿𝑔atm
ETA (19)

are presented in Table 3.  

𝑔𝑆𝐴
 

𝑔𝑇𝐴
 

𝑔𝐸𝑇𝐴
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Table 3. The statistics of the 𝛿𝑔atm and 𝛿𝑔atm
ETA corrections as well as the differences, Δ𝛿𝑔atm (mGal) 

 𝐦𝐢𝐧 𝐦𝐚𝐱 𝐦𝐚𝐱 − 𝐦𝐢𝐧 𝐦𝐞𝐚𝐧 𝐬𝐭 𝐝𝐞𝐯 

𝜹𝒈𝐚𝐭𝐦 0.643 0.875 0.232 0.833 0.039 

𝜹𝒈𝐚𝐭𝐦
𝐄𝐓𝐀 0.748 0.886 0.138 0.865 0.021 

𝚫𝜹𝒈𝐚𝐭𝐦 −0.105 −0.011 0.094 −0.032 0.018 

Both corrections are strongly correlated with the heights of the analysed points. These 

correlations are presented in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The correlations between the height of computation points and the corrections:  

𝛿𝑔atm
ETA – black and 𝛿𝑔atm– orange 

As shown in Figure 6, the 𝛿𝑔𝑎𝑡𝑚
ETA correction (like the 𝑔ETA component) takes slightly different 

values for points with the same height. This proves that its value is also influenced by relief of 

the point's surroundings. The most important differences, however, are between the 

approximate and topography-bounded corrections. For points located at the sea level, the 

differences are small and reach 0.011 mGal. They clearly increase with the height of the points, 

exceeding 0.1 mGal for points with heights of 2600 m. In relation to the total values of this 

correction, the differences shown can be considered as not very large. Please note, however, 

that the 𝛿𝑔atm
ETA corrections vary only within a range of 0.138 mGal; hence, the differences at 

the level of 0.1 mGal should be assessed as significant. Let us also note that the results shown 

for the 𝑔ETA component and the 𝛿𝑔atm
ETA correction are consistent with those shown by Tenzer 

et al. (2010). 

The horizontal distribution of the corrections 𝛿𝑔atm
ETA and the Δ𝛿𝑔atm differences are presented 

in Figures 7 and 8, respectively. 

𝐻𝑃 (m) 

(m
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) 

𝛿𝑔atm
ETA

 

𝛿𝑔atm  
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Figure 7. The 𝛿𝑔atm
ETA corrections a) for the whole area of elaboration and b) for the Tatra mountains 

 

Figure 8. The differences Δ𝛿𝑔atm a) for the whole area of elaboration and b) for the Tatra mountains 

4. CONCLUSIONS 

The analyses performed showed that the values of the 𝑔ETA component are negative (the lowest 

value was −0.012 mGal) at points located on the sea surface and for lowland areas, up to 

approximately 220 m (Figure 4). For higher located areas, it is positive and reaches a value of 

0.125 mGal for points with heights of 2600 m. These values are strongly correlated with the 

heights of the points, but they also depend on the terrain relief around the computation point.  

The topography-bounded gravity atmospheric correction (𝛿𝑔atm
ETA) in the elaboration area ranges 

from 0.748 to 0.886 mGal. Like the 𝑔ETA component, the values of this correction are strongly 

correlated with the heights of the points and also depend on the surrounding relief. Values of 

this correction are different from the commonly used approximate atmospheric correction, 

𝛿𝑔atm, ranging from 0.011 mGal for points at the sea level up to 0.105 mGal for points located 

at an altitude of approximately 2600 m. These discrepancies are a trend and should be 

considered significant. The results obtained within this article confirm previous studies on the 

computation of the atmospheric gravity corrections (e.g. Tenzer et al., 2010). 
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