Czasopismo
2016
|
Vol. 64, no. 2/3
|
175--183
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
We prove the existence of a non-trivial non-negative radial weak solution to the problem [wzór]. Here N > 2α, α ∈ (1/2,1), 1 < r < p < [wzór] and μ ∈ R. We also assume that b > 0 and 0 < λ < [wzór].
Słowa kluczowe
Rocznik
Tom
Strony
175--183
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
autor
- Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran, masoud.bayrami1990@gmail.com
autor
- Department of Mathematical Sciences, Sharif University of Technology, P.O. Box 11365-9415, Tehran, Iran, hesaraki@sharif.edu
Bibliografia
- [1] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach, Universitext, Springer, 2011.
- [2] A. Burchard, A short course on rearrangement inequalities, lecture notes, IMDEA Winter School, Madrid.
- [3] A. Calderón, Lebesgue spaces of differentiable functions, in: Proc. Sympos. Pure Math. 4, Amer. Math. Soc., 1961, 33-49.
- [4] P. L. De Napoli and I. Drelichman, Elementary proofs of embedding theorems for potential spaces of radial functions, arXiv:1404.7468 (2014).
- [5] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), 521-573.
- [6] S. Dipierro, M. Medina and E. Valdinoci, Fractional elliptic problems with critical growth in the whole of Rn, arXiv:1506.01748 (2015).
- [7] N. Ghoussoub and S. Shakerian, Borderline variational problems involving fractional Laplacians and critical singularities, arXiv:1503.08193 (2015).
- [8] E. H. Lieb and M. Loss, Analysis, Grad. Stud. Math. 14, Amer. Math. Soc., Providence, RI, 2001.
- [9] Y.-J. Park, Fractional Pólya-Szegö inequality, J. Chungcheong Math. Soc. 24 (2011), 267-271.
- [10] R. Servadei and E. Valdinoci, Variational methods for non-local operators of elliptic type, Discrete Contin. Dynam. Systems 33 (2013), 2105-2137.
- [11] R. Servadei and E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat. 58 (2014), 133-154.
- [12] X. Wang and J. Yang, Singular critical elliptic problems with fractional Laplacian, Electron. J. Differential Equations 2015, no. 297, 12 pp.
- [13] D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal. 168 (1999), 121-144.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fcdb51d5-4071-461e-8062-65e563806afa