Warianty tytułu
Języki publikacji
Abstrakty
New Yogyakarta International Airport (NYIA) in Kulon Progo Regency was developed with the primary objective of fostering economic growth. The initiation of operations at NYIA in March 2020 triggered substantial urban development in the surrounding area. This research aimed to monitor the changes in land cover and predict the development of urban areas. The research methodology comprised the use of Random Forest, Classification, and Regression Tree machine learning algorithms to create land cover maps. It also incorporated Cellular Automata (CA), which was used to make prediction related to land development. The results showed that the land cover map had an overall accuracy level of above 0.80. Furthermore, it was observed from the results of the time series land cover analysis that there was a rapid growth in built-up lands. Between 2013 and 2017, these lands expanded by 572.38 hectares and further increased by 268.97 hectares from 2017 to 2023, leading to the conversion of 571.64 hectares of agricultural lands. On the basis of these findings, it was projected that by 2033, there would be an expansion of 386.08 hectares in built-up lands, with approximately 356.82 hectares converted from agricultural areas. The accuracy assessment of the 2023 land cover prediction map showed a high level of correctness, with a 97% accuracy rate. On the basis of these results, it was concluded that land conversion is essential to prevent environmental degradation, and further research can be carried out with the aim of assessing environmental quality indices.
Słowa kluczowe
Rocznik
Tom
Strony
238--250
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
- Geography Departement, Faculty of Social Sciences and Political Science, Universitas Negeri Semarang, Sekaran, 50229, Semarang City, Indonesia, akhsin1987@mail.unnes.ac.id
autor
- Environmental Science Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Sekaran, 50229, Semarang City, Indonesia
autor
- Geography Departement, Faculty of Social Sciences and Political Science, Universitas Negeri Semarang, Sekaran, 50229, Semarang City, Indonesia
autor
- Environmental Science Department, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang, Sekaran, 50229, Semarang City, Indonesia
Bibliografia
- 1. Abubakar, G.A., Wang, K., Koko, A.F., Husseini, M.I., Shuka, K.A., Deng, J., Gan, M., 2023. Mapping maize cropland and land cover in semi-arid region in Northern Nigeria using machine learning and Google Earth engine. Remote Sens. https://doi.org/10.3390/rs15112835
- 2. Agustina, I.H., Aji, R.R., Fardani, I., Rochman, G.P., Ekasari, A.M., Mohmed, F.A.J., 2022. Cellular automata for cirebon city land cover and development prediction. Plan. Malaysia 20, 77–88. https://doi.org/10.21837/PM.V20I20.1080
- 3. Bobkov, S., Galiaskarov, E., Astrakhantseva, I., 2021. The use of cellular automata systems for simulation of transfer processes in a non-uniform area. CEUR Workshop Proc. 2843.
- 4. Devitama, F.F., Paramita, B., Ardiani, N.A., 2020. Planning and Designing UPI Science and Techno Park as a Green Campus Center in Universitas Pendidikan Indonesia. IOP Conf. Ser. Earth Environ. Sci. 520. https://doi.org/10.1088/1755-1315/520/1/012021
- 5. Edy, H., Baiquni, M., Triatmodjo, B., 2021. Impact of infrastructure development jalur jalan lintas selatan (JJLS) in Yogyakarta to change in land price. IOP Conf. Ser. Earth Environ. Sci. 683, 12012. https://doi.org/10.1088/1755-1315/683/1/012012
- 6. Fariz, T.R., Nurhidayati, E., 2020. Mapping Land Coverage in the Kapuas Watershed Using Machine Learning in Google Earth Engine. J. Appl. Geospatial Inf. 4, 390–395. https://doi.org/10.30871/jagi.v4i2.2256
- 7. George, J.S., Paul, S.K., Dhawale, R., 2021. A cellular-automata model for assessing the sensitivity of the street network to natural terrain. Ann. GIS 27, 261–272. https://doi.org/10.1080/19475683.2021.1936173
- 8. Gharaibeh, A., Shaamala, A., Obeidat, R., Al-Kofahi, S., 2020. Improving land-use change modeling by integrating ANN with Cellular Automata-Markov Chain model. Heliyon 6, e05092. https://doi.org/10.1016/j.heliyon.2020.e05092
- 9. Gibson, C., Cottenie, K., Wilkinson, S.L., Tekatch, A.M., 2019. Improved peatlands potential for agricultural purposes to support sustainable development in Bengkalis District, Riau Province, Indonesia. https://doi.org/10.1088/1742-6596/1351/1/012114
- 10. Grattarola, D., Livi, L., Alippi, C., 2021. Learning Graph Cellular Automata. Adv. Neural Inf. Process. Syst. 25, 20983–20994.
- 11. He, C., Shi, P., Xie, D., Zhao, Y., 2010. Improving the normalized difference built-up index to map urban built-up areas using a semiautomatic segmentation approach. Remote Sens. Lett. 1, 213–221. https://doi.org/10.1080/01431161.2010.481681
- 12. Hendrayana, H., Harijoko, A., Riyanto, I.A., Nuha, A., Ruslisan, 2023. Groundwater chemistry characterization in the south and southeast Merapi Volcano, Indonesia. Indones. J. Geogr. 55, 10–29. https://doi.org/10.22146/ijg.76433
- 13. Kadarisman, M., 2019. Policy Implementations of New Yogyakarta International Airport Development. DLSU Bus. Econ. Rev. 28, 113–128.
- 14. Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J.C., Mathis, M., Brumby, S.P., 2021. Global land use / land cover with Sentinel 2 and deep learning. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. pp. 4704–4707. https://doi.org/10.1109/IGARSS47720.2021.9553499
- 15. Kulithalai Shiyam Sundar, P., Deka, P.C., 2022. Spatio-temporal classification and prediction of land use and land cover change for the Vembanad Lake system, Kerala: a machine learning approach. Environ. Sci. Pollut. Res. Int. 29, 86220–86236. https://doi.org/10.1007/s11356-021-17257-0
- 16. Li, X., Lao, C., Liu, Y., Liu, X., Chen, Y., Li, S., Ai, B., He, Z., 2013. Early warning of illegal development for protected areas by integrating cellular automata with neural networks. J. Environ. Manage. 130C, 106–116. https://doi.org/10.1016/j.jenvman.2013.08.055
- 17. Lillesand, T., Kiefer, R., Chipman, J., 2004. Remote Sensing and Image Interpretation (Fifth Edition), The Geographical Journal. https://doi.org/10.2307/634969
- 18. Majidi, A.N., Vojinovic, Z., Alves, A., Weesakul, S., Sanchez, A., Boogaard, F., Kluck, J., 2019. Planning nature-based solutions for urban flood reduction and thermal comfort enhancement. Sustainability. https://doi.org/10.3390/su11226361
- 19. Maxwell, A.E., Warner, T.A., Fang, F., 2018. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 39, 2784–2817.
- 20. Nur Hidayati, I., Suharyadi, R., Danoedoro, P., 2019. Environmental Quality Assessment of Urban Ecology based on Spatial Heterogeneity and Remote Sensing Imagery. KnE Soc. Sci. https://doi.org/10.18502/kss.v3i21.4981
- 21. Nur Hidayati, I., Suharyadi, R., Danoedoro, P., 2018. Exploring spectral index band and vegetation indices for estimating vegetation area. Indones. J. Geogr. 50, 211. https://doi.org/10.22146/ijg.38981
- 22. Nurhidayati, E., Buchori, I., Mussadun, Fariz, T.R., 2017. Cellular automata modelling in predicting the development of settlement areas, A case study in the eastern district of Pontianak Waterfront City. IOP Conf. Ser. Earth Environ. Sci. 79. https://doi.org/10.1088/1755-1315/79/1/012010
- 23. Pazúr, R., Lieskovský, J., Bürgi, M., Müller, D., Lieskovský, T., Zhang, Z., Prishchepov, A. V, 2020. Abandonment and recultivation of agricultural lands in Slovakia – patterns and determinants from the past to the future. Land. https://doi.org/10.3390/land9090316
- 24. Pelletier, J., Broxton, P., Hazenberg, P., Zeng, X., Troch, P., Niu, G.-Y., Williams, Z., Brunke, M., Gochis, D., 2015. A gridded global data set of soil, immobile regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv. Model. Earth Syst. 8, n/a-n/a. https://doi.org/10.1002/2015MS000526
- 25. Pravitasari, A.E., Rustiadi, E., Priatama, R.A., Murtadho, A., Kurnia, A.A., Mulya, S.P., Saizen, I., Widodo, C.E., Wulandari, S., 2021. Spatiotemporal distribution patterns and local driving factors of regional development in Java. ISPRS Int. J. GeoInformation. https://doi.org/10.3390/ijgi10120812
- 26. Rachmawati, R., Farda, N.M., Rijanta, R., Setiyono, B., 2019. The advantages and analysis of the location of branchless banking in urban and rural areas in yogyakarta special region, Indonesia. J. Urban Reg. Anal. 11, 53–68. https://doi.org/10.37043/jura.2019.11.1.4
- 27. Rahmayanti, H., Maulida, E., Kamayana, E., 2019. The role of sustainable urban building in Industry 4.0. J. Phys. Conf. Ser. 1387, 0–5. https://doi.org/10.1088/1742-6596/1387/1/012050
- 28. Sanjoto, T.B., Sidiq, W.A.B.N., Nugraha, S.B., 2020. Land cover change analysis to sedimentation rate of Rawapening Lake. Geomate J. 18, 294–301.
- 29. Saputra, M.H., Lee, H.S., 2019. Prediction of land use and land cover changes for North Sumatra, Indonesia, using an artificial-neural-network-based cellular automaton. Sustainability. https://doi.org/10.3390/su11113024
- 30. Sukri, I., Harini, R., Sudrajat, 2023. Effect of transportation infrastructure on built-up area using prediction of land use/cover change: Case study of Yogyakarta International Airport, Indonesia. Indones. J. Geogr. 55.
- 31. Suminar, H.A., Hanim, A., Prianto, F.W., 2016. Pengaruh Pembangunan Infrastruktur Terhadap Pendapatan Regional Kabupaten Jember. Artik. Ilm. Mhs. 1–5.
- 32. Susilo, B., 2017. Multiscale spatial assessment of determinant factors of land use change: Study at urban area of Yogyakarta. IOP Conf. Ser. Earth Environ. Sci. 98, 12015. https://doi.org/10.1088/1755-1315/98/1/012015
- 33. Syalianda, S.I., Kusumastuti, R.D., 2021. Implementation of smart city concept: A case of Jakarta Smart City, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 716. https://doi.org/10.1088/1755-1315/716/1/012128
- 34. Thacker, S., Adshead, D., Fay, M., Hallegatte, S., Harvey, M., Meller, H., O’Regan, N., Rozenberg, J., Watkins, G., Hall, J.W., 2019. Infrastructure for sustainable development. Nat. Sustain. 2, 324–331. https://doi.org/10.1038/s41893-019-0256-8
- 35. Utami, W., Nurcahyanto, D., Sudibyanung, S., 2021. Economic impacts of land acquisition for Yogyakarta International Airport project. Mimb. J. Sos. dan Pembang. 37, 150–160. https://doi.org/10.29313/mimbar.v37i1.6955
- 36. Wahap, N.A., Shafri, H.Z.M., 2020. Utilization of Google Earth Engine (GEE) for land cover monitoring over Klang Valley, Malaysia. IOP Conf. Ser. Earth Environ. Sci. 540. https://doi.org/10.1088/1755-1315/540/1/012003
- 37.Wayan Gede Krisna Arimjaya, I., Dimyati, M., 2022. Remote sensing and geographic information systems technics for spatial-based development planning and policy. Int. J. Electr. Comput. Eng. 12, 5073–5083. https://doi.org/10.11591/ijece.v12i5.pp5073-5083
- 38. Xia, C., Zhang, A., Wang, H., Zhang, B., Zhang, Y., 2019. Bidirectional urban flows in rapidly urbanizing metropolitan areas and their macro and micro impacts on urban growth. A case study of the Yangtze River middle reaches megalopolis, China. Land use policy 82. https://doi.org/10.1016/j.landusepol.2018.12.007
- 39. Xu, T., Gao, J., Coco, G., 2019. Simulation of urban expansion via integrating artificial neural network with Markov chain – cellular automata. Int. J. Geogr. Inf. Sci. 1–24. https://doi.org/10.1080/13658816.2019.1600701
- 40. Yang, C., Zeng, W., 2018. The Correlation of Geo-Ecological Environment and Mountain Urban planning. IOP Conf. Ser. Earth Environ. Sci. 108. https://doi.org/10.1088/1755-1315/108/3/032081
- 41. Yeh, A.G.O., Li, X., Xia, C., 2021. Cellular Automata Modeling for Urban and Regional Planning BT - Urban Informatics. In: Shi, W., Goodchild, M.F., Batty, M., Kwan, M.-P., Zhang, A. (Eds.), Springer Singapore, Singapore, pp. 865–883. https://doi.org/10.1007/978-981-15-8983-6_45
- 42. Yogi, A., Samudro, B., Susilo, A., Pratama, Y., 2022. Land use and cover change (LUCC) and migration in Sukoharjo, Indonesia. Int. J. Ethics Syst. aheadof-p. https://doi.org/10.1108/IJOES-01-2021-0005
- 43. Yu, Z., Di, L., Yang, R., Tang, J., Lin, L., Zhang, C., Rahman, M.S., Zhao, H., Gaigalas, J., Yu, E.G., Sun, Z., 2019. Selection of Landsat 8 OLI Band Combinations for Land Use and Land Cover Classification. In: 8th Int. Conf. Agro-Geoinformatics 1–5.
- 44. Zamroni, A., Sugarbo, O., Trisnaning, P.T., Sagala, S.T., Putra, A.S., 2021. Geochemical approach for seawater intrusion assessment in the area around Yogyakarta International Airport, Indonesia. Iraqi Geol. J. 54, 1–11. https://doi.org/10.46717/igj.54.1F.1ms-2021-06-21
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fca950d0-c1e1-4ceb-b268-1efbb8103056