Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 61 nr 3 | 545--557
Tytuł artykułu

Study on constraint effect and creep crack initiation of plate containing elliptical embedded cracks

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, a plate structure containing elliptical embedded cracks loaded under high temperature is studied. The constraint effect and creep crack initiation of the plate con- taining embedded cracks are discussed by using the finite element method based on the creep ductility exhaustion model. It is indicated that the highest constraint level or the load-independent parameter Q* is observed at the endpoint of the ellipse major axis of an elliptical embedded crack, and the constraint levels increase with crack length or depth, which represents a worse condition for the structure, such as higher stress concentration and greater danger of failure for a larger crack depth ratio a/t or crack length ratio a/c. Moreover, under the creep condition, the embedded crack with a larger a/t, a/c or loadings is accompanied with a higher crack driving force, which can accelerate creep damage, creep cracking initiation (CCI) and shorten the creep crack initiation (CCI) time. Additionally, an empirical prediction equation and engineering approach to the constraint parameter and the CCI time for elliptical embedded cracks are proposed, and the engineering approach to the CCI time is validated.
Wydawca

Rocznik
Strony
545--557
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China, dqwu@cauc.edu.cn
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
autor
  • Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin, China
  • Aviation Engineering Institute, Civil Aviation University of China, Tianjin, China
Bibliografia
  • 1. Budden P.J., Ainsworth R.A., 1999, The effect of constraint on creep fracture assessments, International Journal of Fracture, 97, 1, 237-247.
  • 2. Chen L., Jiang T., Xie L., 2004, Overview of life prediction methods for turbine blades under creep fatigue interaction, Aviation Manufacturing Technology, 12, 61-64.
  • 3.Chen X., Zhou G., Tu S., 2014, Finite element analysis of creep crack propagation of T-type brazing joints, Journal of Mechanical Strength, 5, 790-796.
  • 3. Cocks A.C.F., Ashby M.F., 1980, Intergranular fracture during power-law creep under multiaxial stresses, Metal Science, 14, 8/9, 395-402.
  • 5. Davies C.M., 2006, Crack Initiation and Growth at Elevated Temperatures in Engineering Steels, Department of Mechanical Engineering, Imperial College London, 1-200.
  • 6. Davies C.M., O’Dowd N.P., Nikbin K.M., Webster G.A., 2007, An analytical and computational study of crack initiation under transient creep conditions, International Journal of Solids and Structures, 44, 1823-1843.
  • 7. Holdsworth S.R., 1992, Initiation and early growth of creep cracks from pre-existing defects, Material High Temperature, 10, 127-137.
  • 8. Hosseini E., Holdsworth S., Mazza E., 2013, Stress regime-dependent creep constitutive model considerations in finite element continuum damage mechanics, International Journal of Damage Mechanics, 22, 8, 1186-1205.
  • 9. Liu Y., Murakami S., 1998, Damage localization of conventional creep damage models and proposition of a new model for creep damage analysis, JSME International Journal Series A, 41, 1, 57-65.
  • 10. Mao X., Liu Z., Yang K., et al., 2004, Creep damage calculation model based on time-harden theory, Journal of Mechanical Strength, 26, 1, 105-108.
  • 11. Murakami S., Kawai M., Rong H., 1988, Finite element analysis of creep crack growth by a local approach, International Journal of Mechanical Sciences, 30, 7, 491-502.
  • 12. Rabotnov Y.N., Leckie F.A., Prager W., 1970, Creep problems in structural members, Journal of Applied Mechanics, 37, 1, 249.
  • 13. Riedel H., Rice J.R., 1980, Tensile cracks in creeping solids, ASTM STP 700, American Society for Testing and Materials, 1, 112-130.
  • 14. Shih C.F., German M.D., 1981, Requirements for a one parameter characterization of crack tip fields by the HRR singularity, International Journal of Fracture, 17, 27-43.
  • 15. Wen J.F., Tu S.T., 2014, A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction, Engineering Fracture Mechanics, 123, 197-210.
  • 16. Wu D.Q., Jing H.Y., Xu L.Y., 2020, Engineering application of enhanced C*-Q* two parameter approaches for predicting creep crack initiation times, European Journal of Mechanics - A/Solids, 82, 104013.
  • 17. Xu L.Y., Zhang X.F., Zhao L., Han Y., Jing H., 2016, Quantifying the creep crack-tip constraint effects using a load-independent constraint parameter Q*, International Journal of Mechanical Sciences, 119, 320-332.
  • 18. Yatomi M., Bettinson A.D., O'Dowd N.P., Nikbin K.M., 2004, Modelling of damage development and failure in notched-bar multiaxial creep tests, Fatigue and Fracture of Engineering Materials and Structures, 27, 4, 283-295.
  • 19. Yamamoto M., Miura N., Ogata T.K., 2010, Applicability of C* parameter in assessing Type IV creep cracking in Mod. 9Cr-1Mo steel welded joint, Engineering Fracture Mechanics, 77, 15, 3022-3034.
  • 20. You Y., Ling X., Tu S., 2004, Finite element analysis of creep damage of small punch test specimen at elevated temperature, Journal of Mechanical Strength, 26, 2, 183-187.
  • 21. Zhao L., Jing H., Xu L., Han Y., Xiu J., 2012, Analysis of creep crack growth behavior of P92 steel welded joint by experiment and numerical simulation, Materials Science and Engineering A, 558, 119-128.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fc3ae65c-a5b0-4e13-b824-f87408887485
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.