Warianty tytułu
Języki publikacji
Abstrakty
Machine-aided detection of R-peaks is becoming a vital task to automate the diagnosis of critical cardiovascular ailments. R-peaks in Electrocardiogram (ECG) is one of the key segments for diagnosis of the cardiac disorder. By recognizing R-peaks, heart rate of the patient can be computed and from that point onwards heart rate variability (HRV), tachycardia, and bradycardia can also be determined. Most of the R-peaks detectors suffer due to non-stationary behaviors of the ECG signal. In this work, a wavelet transform based automated R-peaks detection method has been proposed. A wavelet-based multiresolution approach along with Shannon energy envelope estimator is utilized to eliminate the noises in ECG signal and enhance the QRS complexes. Then a Hilbert transform based peak finding logic is used to detect the R-peaks without employing any amplitude threshold. The efficiency of the proposed work is validated using all the ECG signals of MIT-BIH arrhythmia database, and it attains an average accuracy of 99.83%, sensitivity of 99.93%, positive predictivity of 99.91%, error rate of 0.17% and an average F-score of 0.9992. A close observation of the simulation and validation indicates that the suggested technique achieves superior performance indices compared to the existing methods for real ECG signal.
Czasopismo
Rocznik
Tom
Strony
566--577
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
- Signal Processing & Communication Lab, Department of Electrical Engineering, National Institute of Technology Rourkela, Odisha 769008, India, rakshitmanas09@gmail.com
autor
- Department of Electrical Engineering, National Institute of Technology Rourkela, Odisha, India, sdas@nitrkl.ac.in
Bibliografia
- [1] McSharry PE, Clifford GD, Tarassenko L, Smith LA. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans Biomed Eng 2003;50:289–94. http://dx.doi.org/10.1109/TBME.2003.808805.
- [2] Lin C, Kail G, Giremus A, Mailhes C, Tourneret J-Y, Hlawatsch F. Sequential beat-to-beat P and T wave delineation and waveform estimation in ECG signals: Block Gibbs sampler and marginalized particle filter. Signal Process 2014;104:174–87. http://dx.doi.org/10.1016/j.sigpro.2014.03.011.
- [3] Panigrahy D, Rakshit M, Sahu PK. FPGA implementation of heart rate monitoring system. J Med Syst 2016;40:1–12. http://dx.doi.org/10.1007/s10916-015-0410-4.
- [4] Ari S, Das MK, Chacko A. ECG signal enhancement using S-transform. Comput Biol Med 2013;43:649–60. http://dx.doi.org/10.1016/j.compbiomed.2013.02.015.
- [5] Pan J, Tompkins W. A real-time QRS detection algorithm. Biomed Eng IEEE 1985;BME-32:230–6. http://dx.doi.org/10.1109/TBME.1985.325532.
- [6] Hamilton PS, Tompkins WJ. Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans Biomed Eng 1986;33:1157–65.
- [7] Arzeno NM, Deng Z De, Poon CS. Analysis of first-derivative based QRS detection algorithms. IEEE Trans Biomed Eng 2008;55:478–84. http://dx.doi.org/10.1109/TBME.2007.912658.
- [8] Manikandan MS, Soman KP. A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed Signal Process Control 2012;7:118–28. http://dx.doi.org/10.1016/j.bspc.2011.03.004.
- [9] Benitez DS, Gaydecki PA, Zaidi A, Fitzpatrick AP. A new QRS detection algorithm based on the Hilbert transform. Comput Cardiol 2000 2000;27:379–82. http://dx.doi.org/10.1109/CIC.2000.898536.
- [10] Silipo R, Marchesi C. Artificial neural networks for automatic ECG analysis. IEEE Trans Signal Process 1998;46:1417–25. http://dx.doi.org/10.1109/78.668803.
- [11] Pal S, Mitra M. Empirical mode decomposition based ECG enhancement and QRS detection. Comput Biol Med 2012;42:83–92. http://dx.doi.org/10.1016/j.compbiomed.2011.10.012.
- [12] Zidelmal Z, Amirou A, Ould-Abdeslam D, Moukadem A, Dieterlen A. QRS detection using S-transform and Shannon energy. Comput Methods Programs Biomed 2014;116:1–9. http://dx.doi.org/10.1016/j.cmpb.2014.04.008.
- [13] Ghaffarl A, Golbayani H, Ghasemi M. A new mathematical based QRS detector using continuous wavelet transform. Comput Electr Eng 2008;34:81–91. http://dx.doi.org/10.1016/j.compeleceng.2007.10.005.
- [14] Martinez JP, Almeida R, Olmos S, Rocha AP, Laguna P. A wavelet-based ECG delineator: evaluation on standard databases. IEEE Trans Biomed Eng 2004;51:570–81. http://dx.doi.org/10.1109/TBME.2003.821031.
- [15] Zidelmal Z, Amirou A, Adnane M, Belouchrani A. QRS detection based on wavelet coefficients. Comput Methods Programs Biomed 2012;107:490–6. http://dx.doi.org/10.1016/j.cmpb.2011.12.004.
- [16] Moody GB, Mark RG. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag 2001;20:45–50. http://dx.doi.org/10.1109/51.932724.
- [17] Banerjee S, Gupta R, Mitra M. Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement 2012;45:474–87. http://dx.doi.org/10.1016/j.measurement.2011.10.025.
- [18] Yan R, Gao RX. Multi-scale enveloping spectrogram for vibration analysis in bearing defect diagnosis. Tribol Int 2009;42:293–302. http://dx.doi.org/10.1016/j.triboint.2008.06.013.
- [19] Addison PS, Walker J, Guido RC. Time–frequency analysis of biosignals. IEEE Eng Med Biol Mag 2009;28(5):14–29. http://dx.doi.org/10.1109/MEMB.2009.934244.
- [20] Chouakri SA, Bereksi-Reguig F, Taleb-Ahmed A. QRS complex detection based on multi wavelet packet decomposition. Appl Math Comput 2011;217:9508–25. http://dx.doi.org/10.1016/j.amc.2011.03.001.
- [21] Rai HM, Trivedi A, Shukla S. ECG signal processing for abnormalities detection using multi-resolution wavelet transform and Artificial Neural Network classifier. Measurement 2013;46:3238–46. http://dx.doi.org/10.1016/j.measurement.2013.05.021.
- [22] Rein S, Reisslein M. Low-memory wavelet transforms for wireless sensor networks: a tutorial. IEEE Commun Surv Tutorials 2011;13:291–307. http://dx.doi.org/10.1109/SURV.2011.100110.00059.
- [23] Mallat S. A wavelet tour of signal processing. A wavelet tour signal process; 1999;20–41. http://dx.doi.org/10.1016/B978-012466606-1/50004-0.
- [24] Gutiérrez-Rivas R, Garcia JJ, Marnane WP, Hernández Á. Novel real-time low-complexity QRS complex detector based on adaptive thresholding. IEEE Sens J 2015;15: 6036–43.
- [25] Benitez D, Gaydecki PA, Zaidi A, Fitzpatrick AP. The use of the Hilbert transform in ECG signal analysis. Comput Biol Med 2001;31:399–406. http://dx.doi.org/10.1016/S0010-4825(01)00009-9.
- [26] Hennig C, Orglmeister R, Group BE. QRS detection using zero crossing counts. Prog Biomed Res 2003;8:138–45.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fc366354-e545-4e9f-8fb8-df9847cd6945