Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 26, nr 4 | 629--640
Tytuł artykułu

Using a novel method to evaluate the performance of human resources in green logistics enterprises

Warianty tytułu
PL
Nowa metoda oceny wydajności zasobów ludzkich w zielonych przedsiębiorstwach logistycznych
Języki publikacji
EN
Abstrakty
EN
The essence of low-carbon logistics is to make logistics capacity grow moderately to meet the requirements of social and economic developments and the goals of energy conservation and carbon reduction through logistics planning and policies, logistics rationalization and standardization, logistics informationization, low-carbon logistics technologies, etc. This study evaluates the performances of human resources in low-carbon logistics enterprises from three assessment facets: work ability, work performance, and work attitude. It adopts the AHP method to reasonably determine an indicator system of performance evaluation and its weight to avoid certain human-caused bias. According to the results herein, the low-carbon work attitude of the case company in recent years has produced good performance, but its low-carbon work performance and low-carbon work ability are both poor. The case company should practically implement and strengthen these indicators so as to enhance human resource performance in low-carbon logistics enterprises. This study establishes a human resources performance evaluation system for low-carbon logistics enterprises to measure the low-carbon working ability, work performance, and working attitude of their general staff. In this way, enterprises may understand their development status, improve development plans, and formulate the best human resources management and development decisions, thus positively guiding their future development.
Wydawca

Rocznik
Strony
629--640
Opis fizyczny
Bibliogr. 30 poz., tab.
Twórcy
  • Zhongshan Institute, University of Electronic Science and Technology of China, Guangdong 528400, China
autor
  • College of Business Administration, Capital University of Economics and Business, Beijing 100070, China, wangkai@cueb.edu.cn
Bibliografia
  • [1] Hu Y Zhou P Zhou D. What is low-carbon development? A conceptual analysis. Energy Procedia. 2011;(5):1706-10. https://www.sciencedirect.com/science/article/pii/S1876610211012264?via%3Dihub.
  • [2] Tsai SB Yu J Ma L Luo F Zhou J Chen Q et al. A study on solving the production process problems of the photovoltaic cell industry. Renew Sust Energy Rev. 2018;82:3546-53. https://www.sciencedirect.com/science/article/pii/S136403211731479X.
  • [3] Liu B Li T Tsai SB. Low carbon strategy analysis of competing supply chains with different power structures. Sustainability. 2017;9:835. DOI:10.3390/su9050835.
  • [4] Tsai SB. Using the DEMATEL model to explore the job satisfaction of research and development professionals in China’s photovoltaic cell industry. Renew Sust Energy Rev. 2018;81:62-8. https://www.sciencedirect.com/science/article/pii/S1364032117310821.
  • [5] Raineri A. Linking human resources practices with performance: the simultaneous mediation of collective affective commitment and human capital. Int J Human Resource Manage. 2017;28(22):3149-78. https://www.tandfonline.com/doi/abs/10.1080/09585192.2016.1155163.
  • [6] Kristen M Joshua JD Kyle T Franz WK. Family firm human resource practices: Investigating the effects of professionalization and bifurcation bias on performance. J Business Res. 2018;84:326-37. https://www.sciencedirect.com/science/article/pii/S0148296317302187.
  • [7] Daspit JJ Madison K Barnett T Long RG. The emergence of bifurcation bias from unbalanced families: Examining HR practices in the family firm using circumplex theory. Human Resource Manage Rev. 2017;28(1):18-32. https://www.sciencedirect.com/science/article/pii/S1053482217300359.
  • [8] Ghadimi P Toosi FG Heavey C. A multi-agent systems approach for sustainable supplier selection and order allocation in a partnership supply chain. Europ J Operational Res. 2018;269(1):286-301. https://www.sciencedirect.com/science/article/pii/S0377221717306410.
  • [9] Hosseini S Sarder MD. Development of a Bayesian network model for optimal site selection of electric vehicle charging station. Int J Electrical Power Energy Systems. 2019;105:110-22. https://www.sciencedirect.com/science/article/pii/S0142061517309936.
  • [10] Kellner F. Sustainability in supplier selection and order allocation: Combining integer variables with Markowitz portfolio theory. J Cleaner Production. 2019;214:462-74. https://www.sciencedirect.com/science/article/pii/S0959652618340460?via%3Dihub.
  • [11] Narayanamoorthy S Geetha S Rakkiyappan R Joo YH. Interval-valued intuitionistic hesitant fuzzy entropy based VIKOR method for industrial robots selection. Expert Systems Applications. 2019;121:28-37. https://www.sciencedirect.com/science/article/pii/S0957417418307772.
  • [12] Prosman EJ Sacchi R. New environmental supplier selection criteria for circular supply chains: lessons from a consequential LCA study on waste recovery. J Cleaner Production. 2018;172:2782-92. https://www.sciencedirect.com/science/article/pii/S0959652617328068.
  • [13] Sinha AK Anand A. Towards fuzzy preference relationship based on decision making approach to access the performance of suppliers in environmental conscious manufacturing domain. Computers Industrial Eng. 2017;105:39-54. https://www.sciencedirect.com/science/article/pii/S0360835216305113.
  • [14] Chrisman JJ Devaraj S Patel PC. The impact of incentive compensation on labor productivity in family and nonfamily firms. Family Business Rev. 2017;30(2):119-36. https://journals.sagepub.com/doi/abs/10.1177/0894486517690052.
  • [15] Saaty TL. The Analytic Hierarchy Process. New York: McGraw-Hill; 1980. ISBN: 0070543712.
  • [16] Saaty TL. Decision Making with Dependence and Feedback: The Analytic Network Process. Pittsburgh: RWS Publications;1996. ISBN: 1888603070.
  • [17] Saaty TL Shih HS. Structures in decision making: On the subjective geometry of hierarchies and networks. European J Operational Res. 2009;199(3)867-72. https://www.sciencedirect.com/science/article/pii/S0377221709002203.
  • [18] Sarkis J. A strategic decision framework for green supply chain management. J Cleaner Production. 2003;11(4):397-409. https://www.sciencedirect.com/science/article/pii/S0959652602000628.
  • [19] Leung LC Lam KC Cao D. Implementing the balanced scorecard using the analytic hierarchy process & the analytic network process. J Operational Res Soc. 2006;57(6):682-91. https://www.tandfonline.com/doi/abs/10.1057/palgrave.jors.2602040.
  • [20] Lan LW Wu WW Lee YT. On the decision structures and knowledge discovery for ANP modeling. Int J Intelligence Sci. 2013;3(1A):15-23. DOI: 10.4236/ijis.2013.31A003.
  • [21] Deng XY Hu Y Deng Y Mahadevan S. Environmental impact assessment impact assessment based on numbers. Expert Systems Applications. 2014;41(2):635-43. https://www.sciencedirect.com/science/article/pii/S0957417413005897.
  • [22] Abhishek RD Sejal SB. Analysis of suitable locations of urban green space based on AHP for Surat City. J Recent Activities Infrastructure Sci. 2017;2(2):1-10. http://matjournals.in/index.php/JoRAIS/article/view/1533.
  • [23] Validi S Bhattacharya A Byrne PJ. Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model. Annals Operations Res. 2018:1-32. https://link.springer.com/article/10.1007/s10479-018-2887-y.
  • [24] Huang L. A cultural model of online banking adoption: Long-term orientation perspective. J Organizational End User Computing. 2017;29(1):1-22. DOI: 10.4018/JOEUC.2017010101.
  • [25] Fabisiak L. Web service usability analysis based on user preferences. J Organizational End User Computing. 2018;30(4):1-13. DOI: 10.4018/JOEUC.2018100101.
  • [26] Avdic A. Second order interactive end user development appropriation in the public sector: Application development using spreadsheet programs. J Organizational End User Computing. 2018;30(1):82-106. DOI: 10.4018/JOEUC.2018010105.
  • [27] Awasthi A Govindan K Gold S. Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. Int J Production Economics. 2018;195:106-17. https://www.sciencedirect.com/science/article/pii/S0925527317303286.
  • [28] Kalinichenko A Havrysh V. Environmentally friendly fuel usage: Economic margin of feasibility. Ecol Chem Eng S. 2019;26(2):241-54. DOI: 10.1515/eces-2019-0030.
  • [29] Awasthi A Kannan G. Green supplier development program selection using NGT and VIKOR under fuzzy environment. Computers Industrial Eng. 2016;91:100-8. https://www.sciencedirect.com/science/article/pii/S036083521500457X.
  • [30] Bavafa A Mahdiyar A Marsono AK. Identifying and assessing the critical factors for effective implementation of safety programs in construction projects. Safety Sci. 2018;106:47-56. https://www.sciencedirect.com/science/article/pii/S0925753517309827.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fbe31a94-4123-4e1d-9344-fc18691c8e14
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.