Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 9 (44) | 374--396
Tytuł artykułu

Super-Twisting MRAS Observer-Based Non-linear Direct Flux and Torque Control for Induction Motor Drives

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research paper proposes a novel design of an efficient combined sliding mode observer (SMO) for induction motor flux and speed estimation. The suggested sensorless technique employs the sliding mode’s second-order approach using a model reference adaptive system (MRAS). The second-order super-twisting control method is free-chattering, which lowers the chattering effect while preserving the same good features as the first-order sliding mode control (SMC). In addition, the conjunction with the MRAS as a separated speed estimator can raise the accuracy and make the observer immune to speed fluctuations, particularly for low-speed applications. Furthermore, in order to achieve effective decoupled flux–torque control, the super-twisting algorithm (STA) was combined with a non-linear feedback linearisation controller for the inner control loop construction. This strategy can boost the control system’s stability and robustness against external disturbances and modelling uncertainty. The performance analysis of the suggested methods has been carried out via simulation and experimental validation utilizing MATLAB/Simulink with the dSpace 1104 real-time interface.
Wydawca

Rocznik
Strony
374--396
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Institute of Electrical and Electronic Engineering, University of M’hamed BOUGARA of Boumerdes, Boumerdes, Algeria., a.ammar@univ-boumerdes.dz
  • LGEB Laboratory, Electrical Engineering Department, Biskra University, Algeria
  • LGEB Laboratory, Electrical Engineering Department, Biskra University, Algeria
  • Barika University Center, Batna, Algeria
  • M’sila University, M’sila, Algeria
autor
  • Faculty of Applied Science, Univ. Artois, EA 4025 LSEE F-62400, Béthune, France
Bibliografia
  • Ammar, A., Ameid, T., Azzoug, Y., Kheldoun, A. and Metidji, B. (2020a). Design of speed sensorless control of induction motor based on dual-nonlinear control technique. In: s International Conference on Electrical Engineering (ICEE). Istanbul, Turkey: IEEE, pp. 1–6.
  • Ammar, A., Kheldoun, A., Metidji, B., Ameid, T. and Azzoug, Y. (2020b). Feedback Linearization Based Sensorless Direct Torque Control using Stator Flux MRAS-Sliding Mode Observer for Induction Motor Drive. ISA Transactions, 98, pp. 382–392. doi: 10.1016/j.isatra.2019.08.061.
  • Barambones, O., Alkorta, P. and de Durana, J. M. G. (2014). A Real-Time Estimation and Control Scheme for Induction Motors Based on Sliding Mode Theory. Journal of the Franklin Institute, 351(8), pp. 4251–4270. doi: 10.1016/j.jfranklin.2014.04.020.
  • Barth, A., Reichhartinger, M., Regern, J., Horn, M. and Wulff, K. (2015). Lyapunov-Design for a Super-Twisting Sliding-Mode Controller using the Certainty-Equivalence Principle. PapersOnLine, 48(11), pp. 860–865. doi: 10.1016/j.ifacol.2015.09.298.
  • Bendjeddou, Y., Deboucha, A., Bentouhami, L., Merabet, E. and Abdessemed, R. (2021). Super Twisting Sliding Mode Approach Applied to Voltage Orientated Control of a Stand-Alone Induction Generator. Protection and Control of Modern Power Systems, 6(1), p. 18. doi: 10.1186/s41601021-00201-2.
  • Choi, A., Kim, H., Hu, M., Kim, Y., Ahn, H. and You, K. (2022). Super-Twisting Sliding Mode Control with SVR Disturbance Observer for PMSM Speed Regulation. Applied Sciences, 12(21), p. 10749. doi: 10.3390/app122110749.
  • Csizmadia, M. and Kuczmann, M. (2023). A Novel Feedback Linearisation Control of Flyback Converter. Power Electronics and Drives, 8(1), pp. 74–83. doi: 10.2478/pead-2023-0006.
  • Czyżniewski, M. and Łangowski, R. (2024). Robust Asymptotic Super Twisting Sliding Mode Observer for Non-Linear Uncertain Biochemical Systems. Journal of Process Control, 136, p. 103192. doi: 10.1016/j.jprocont.2024.103192.
  • Ghanes, M. and Zheng, G. (2009). On Sensorless Induction Motor Drives: Sliding-Mode Observer and Output Feedback Controller. IEEE Transactions on Industrial Electronics, 56(9), pp. 3404–3413. doi: 10.1109/TIE.2009.2026387.
  • Guedida, S., Tabbache, B., Benzaoui, K. M. S., Nounou, K. and Nesr, M. (2024). Novel Speed Sensorless DTC Design for a Five-Phase Induction Motor with an Intelligent Fractional Order Controller Based-MRAS Estimator. Power Electronics and Drives, 9(1), pp. 63–85. doi: 10.2478/pead-2024-0005.
  • Guo, B., Su, M., Sun, Y., Wang, H., Dan, H., Tang, Z. and Cheng, B. (2019). A Robust Second-Order Sliding Mode Control for Single-Phase Photovoltaic Grid-Connected Voltage Source Inverter. IEEE Access, 7, pp. 53202–53212. doi: 10.1109/ACCESS.2019.2912033.
  • Holakooie, M. H., Ojaghi, M. and Taheri, A. (2019). Modified DTC of a Six-Phase Induction Motor with a Second-Order Sliding-Mode MRAS-Based Speed Estimator. IEEE Transactions on Power Electronics, 34(1), pp. 600–611. doi: 10.1109/TPEL.2018.2825227.
  • Huang, G., Huang, W., Li, Z., Li, J., He, J., Zhang, C. and Zhao, K. (2021). An Improved Sliding-Mode Observer-Based Equivalent-Input-Disturbance Approach for Permanent Magnet Synchronous Motor Drives with Faults in Current Measurement Circuits. Transactions of the Institute of Measurement and Control, 43(12), pp. 2589–2598. doi: 10.1177/01423312211002584.
  • Lascu, C., Argeseanu, A. and Blaabjerg, F. (2019). Super-Twisting Sliding Mode Direct Torque and Flux Control of Induction Machine Drives. IEEE Transactions on Power Electronics, 35(5), pp. 5057–5065. doi: 10.1109/TPEL.2019.2944124.
  • Lascu, C., Boldea, I. and Blaabjerg, F. (2009). A Class of Speed-Sensorless Sliding-Mode Observers for High-Performance Induction Motor Drives. IEEE Transactions on Industrial Electronics, 56(9), pp. 3394–3403. doi: 10.1109/TIE.2009.2022518.
  • Levant, A. (2003). Higher-Order Sliding Modes, Differentiation and Output-Feedback Control. International Journal of Control, 76(9–10), pp. 924–941. doi: 10.1080/0020717031000099029.
  • Li, G., Li, H., He, X. and Wang, X. (2023). A Sensorless Control System of Permanent Magnet Synchronous Motor for Electric Locomotive Based on Improved High-Frequency Rotating Injection Method. Transactions of the Institute of Measurement and Control, 45(9), pp. 1685–1692. doi: 10.1177/01423312221142972.
  • Mao, S., Tao, H. and Zheng, Z. (2020). Sensorless Control of Induction Motors Based on FractionalOrder Linear Super-Twisting Sliding Mode Observer with Flux Linkage Compensation. IEEE Access, 8, pp. 172308–172317. doi: 10.1109/ACCESS.2020.3024626.
  • Moreno, J. A. and Osorio, M. (2012). Strict Lyapunov Functions for the Super-Twisting Algorithm. IEEE Transactions on Automatic Control, 57(4), pp. 1035–1040. doi: 10.1109/TAC.2012.2186179.
  • Orlowska-Kowalska, T., Tarchala, G. and Dybkowski, M. (2014). Sliding-Mode Direct Torque Control and Sliding-Mode Observer with a Magnetizing Reactance Estimator for the Field-Weakening of the Induction Motor Drive. Mathematics and Computers in Simulation, 98, pp. 31–45. doi: 10.1016/j.matcom.2013.05.012.
  • Qian, W., Li, W., Guo, X. and Wang, H. (2024). A Switching Gain Adaptive Sliding Mode Observer for SoC Estimation of Lithium-Ion Battery. Energy, 292, p. 130585. doi: 10.1016/j.energy.2024.130585.
  • Rashed, M., Goh, K. B., Dunnigan, M. W., MacConnell, P. F. A., Stronach, A. F. and Williams, B. W. (2005). Sensorless Second-Order Sliding-Mode Speed Control of a Voltage-Fed hInduction-Motor Drive Using Nonlinear State Feedback. IEE Proceedings - Electric Power Applications, 152(5), p. 1127. doi: 10.1049/ip-epa:20050042.
  • Sami, I., Ullah, S., Basit, A., Ullah, N. and Ro, J. (2020). Integral Super Twisting Sliding Mode Based Sensorless Predictive Torque Control of Induction Motor. IEEE Access, 8, pp. 186740–186755. doi: 10.1109/ACCESS.2020.3028845.
  • Schauder, C. (1992). Adaptive Speed Identification for Vector Control of Induction Motors Without Rotational Transducers. IEEE Transactions on Industry Applications, 28(5), pp. 1054–1061. doi: 10.1109/28.158829.
  • Tajima, H. and Hori, Y. (1993). Speed Sensorless FieldOrientation Control of the Induction Machine. IEEE Transactions on Industry Applications, 29(1), pp. 175–180. doi: 10.1109/28.195904.
  • Tang, Q., Shen, A., Luo, X. and Xu, J. (2017). PMSM Sensorless Control by Injecting HF Pulsating Carrier Signal Into ABC Frame. IEEE Transactions on Power Electronics, 32(5), pp. 3767–3776. doi: 10.1109/TPEL.2016.2583787.
  • Tarchala, G. and Orlowska-Kowalska, T. (2018). Equivalent-Signal-Based Sliding Mode Speed MRAS-Type Estimator for Induction Motor Drive Stable in the Regenerating Mode. IEEE Transactions on Industrial Electronics, 65(9), pp. 6936–6947. doi: 10.1109/TIE.2018.2795518.
  • Vajsz, T., Számel, L. and Handler, Á. (2019). An Investigation of Direct Torque Control and Hysteresis Current Vector Control for Motion Control Synchronous Reluctance Motor Applications. Power Electronics and Drives, 4(1), pp. 115–124. doi: 10.2478/pead-2019-0009.
  • Wang, F., Zhang, Z., Mei, X., Rodríguez, J. and Kennel, R. (2018a). Advanced Control Strategies of Induction Machine: Field Oriented Control, Direct Torque Control and Model Predictive Control. Energies, 11(1), p. 120. doi: 10.3390/en11010120.
  • Wang, H., Ge, X. and Liu, Y.-C. (2018b). Second-Order Sliding-Mode MRAS Observer-Based Sensorless Vector Control of Linear Induction Motor Drives for Medium-Low Speed Maglev Applications. IEEE Transactions on Industrial Electronics, 65(12), pp. 9938–9952. doi: 10.1109/TIE.2018.2818664.
  • Wu, T., Luo, D., Wu, X., Liu, K., Huang, S. and Peng, X. (2021). Square-wave Voltage Injection Based PMSM Sensorless Control Considering Time Delay at Low Switching Frequency. IEEE Transactions on Industrial Electronics, 69(6), pp. 5525–5535. doi: 10.1109/TIE.2021.3094444.
  • Xin, Z., Zhao, R., Blaabjerg, F., Zhang, L. and Loh, P. C. (2017). An Improved Flux Observer for Field-Oriented Control of Induction Motors Based on Dual Second-Order Generalized Integrator Frequency-Locked Loop. IEEE Journal of Emerging and Selected Topics in Power Electronics, 5(1), pp. 513–525. doi: 10.1109/JESTPE.2016.2623668.
  • Zorgani, Y. A., Koubaa, Y. and Boussak, M. (2016). MRAS State Estimator for Speed Sensorless ISFOC Induction Motor Drives with Luenberger Load Torque Estimation. ISA Transactions, 61, pp. 308–317. doi: 10.1016/j.isatra.2015.12.015.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fb9d6b3e-8e5d-487a-892d-9c11bc661bb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.