Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 68, nr 2 | 26--35
Tytuł artykułu

The effect on wear resistance of laser alloying with chromium and titanium of grey iron parts

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the presented study is to evaluate the influence of laser alloying with chromium and titanium on the surface layer microstructure and abrasive wear resistance of grey iron parts. A coulter flap was chosen as the object of this investigation. To produce the alloyed layer on the area of the flap that is the most exposed to wear, a diode laser was used as the heat source. The investigation demonstrated that laser alloying with chromium and titanium can increase the wear resistance of components working in abrasive conditions. A smaller mass loss after the wear tests in abrasive conditions of soil could be expected. The laser alloyed layer (with a depth of approx. 400 μm) was characterized by a martensite microstructure (mainly), homogenous morphology and fine grains. A fivefold increase in hardness (approximately 1050HV) in comparison to the hardness of the base material and twofold in comparison to the original ledeburitic surface layer of the coulter flap was noted. Some changes after laser alloying in the surface stereometry were observed (a decrease in the roughness parameters is possible). The roughness parameter values after the wear test decreased in the case of the original and alloyed coulter flaps..
Słowa kluczowe
Wydawca

Rocznik
Strony
26--35
Opis fizyczny
Bibliogr. 21 poz., wykr., zdj.
Twórcy
Bibliografia
  • [1] Stachowiak G., Salasi M.: Three-Body Abrasion Corrosion Studies of High-Cr Cast Irons: Benefits and Limitations of Triboelectrochemical Methods. J. Bio. Tribo. Corros, 2015, 1, 6.
  • [2] Medynski A., Janus A.: Effect of heat treatment parameters on abrasive wear and corrosion resistance of austenitic nodular cast iron Ni–Mn–Cu. Arch. Civil Mech. Eng, 2018, 18, 515-521
  • [3] Fan X., Yin X., He S., Zhang L., Cheng L.: Friction and wear behaviors of C/C-SiC composites containing Ti3SiC2. Wear, 2012, 274–275, 188-195.
  • [4] Wei J., Lin B., Wang H., Sui T., Yan S., Zhao F., Wang A., Fang S.: Friction and wear characteristics of carbon fiber reinforced silicon carbide ceramic matrix (Cf/SiC) composite and zirconia (ZrO2) ceramic under dry condition. Tribol. Int., 2018, 119, 45-54.
  • [5] Xu S., Xu Y., Liu Y., Fang M., Wu X., Min X., Zhang X., Huang Z.: Fabrication and abrasive wear behavior of ZrO2- SiC-Al2O3 ceramic. Ceram. Int. 2017, 43, 15060-15067.
  • [6] Nieto A., Yang H., Jiang L., Schoenung J.M.: Reinforcement size effects on the abrasive wear of boron carbide reinforced aluminium composites. Wear, 2017, 390-391, 228-235.
  • [7] Adamiak M., Górka J., Kik T.: Comparison of abrasion resistance of selected constructional materials. J. Achiev. Mater. Manuf. Eng. 2009, 37, 375-380.
  • [8] Paczkowska M.: The evaluation of the influence of laser treatment parameters on the type of thermal effects in the surface layer microstructure of gray irons. Optics and Laser Technology, 2016, 143-148.
  • [9] Paczkowska M., Ratuszek W., Waligóra W.: Microstructure of laser boronized nodular iron, Surface & Coatings Technology 205, 2010, 2542-2545.
  • [10] Paczkowska M., Wojciechowski Ł.: Adhesive wear tests of nodular iron parts after laser boronizing. Tribologia, 3-4, 2007, 71-83.
  • [11] da Costa A.R., Vilar R.: Erosion by solid particle impingement: experimental results with cast-iron, laser-treated surface. Tribology Letters 3(4), 1997, 379-385.
  • [12] Xin T., Hong Z., Zhihui Z., Luquan R.: Thermal fatigue behavior of grey cast iron with striated biomimetic nonsmooth surface. Journal of Materials Processing Technology Vol. 206, Issues 1–3, 12 September, 2008, 473-480.
  • [13] Wei L., Deng L.: Laser alloying on chromium coated surface of nodular cast iron. Transactions of Nonferrous Metals Society of China, v 8, n 3, Sep 1998, 496-499.
  • [14] Zeng D., Xie C., Yung K.C.: Investigation of laser surface alloying of copper on high nickel austenitic ductile iron. Materials Science and Engineering A333, 2002, 223-231.
  • [15] Xin T., Hong Z., Lu-quan R., Zhi-hui Z., Ren-dong C., Wei Z.: Thermal fatigue characteristics of gray cast iron with non-smooth surface treated by laser alloying of Cr powder. Surface and Coatings Technology, vol. 202, 12, 2008, 2527-2534.
  • [16] Kotarska A.: The Laser Alloying Process of Ductile Cast Iron Surface with Titanium. Metals 2021, 11(2), 282; 1-13
  • [17] Lont A., Górka J, Janicki D., Matus K.: The Laser Alloying Process of Ductile Cast Iron Surface with Titanium Powder in Nitrogen atmosphere. Coatings 2022, 12, 1-13.
  • [18] Paczkowska M.: The comparison of the effects of nodular cast iron laser alloying with selected substances. Materials, 2022, vol. 15/21, 7561-1-7561-15.
  • [19] Paczkowska M., Selech J.: Microstructure and soil wear resistance of grey cast iron with Ni and Cr. Materials, 2022, vol. 15/9, 3153-1-3153-14.
  • [20] Napiórkowski J., Lemecha M., Konat Ł.: Forecasting the Wear of Operating Parts in an Abrasive Soil Mass Using the Holm-Archard Model. Materials 2019, 12, 2180.
  • [21] Stachowiak G.W.: Particle angularity and its relationship to abrasive and erosive wear. Wear 2000, 241, 214-219.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fb8c3d88-9b3e-4611-93db-f00b4fff76c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.