Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | T. 18, z. 2 | 97--110
Tytuł artykułu

Impact analysis of micro-jet cooling for stress concentration in a crane bumper during a collision

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the structure of crane bumpers, there is a need to join various types of steel. Usually, low-alloy steel structures are used for this purpose, which can be represented by S355J2 steel. The tensile strength of S355J2 low-alloy steel is slightly below 600 MPa, and the tensile strength of S355J2 steel is at the high level of 200 J at ambient temperature. The impact strength of this steel in negative temperatures is also good at over 47 J at -60 °C, so it meets the 6th class of impact toughness. Welding structures, after classic gas metal arc welding (GMAW) processes, meet only the second impact toughness class. An improved GMAW process was used by micro-jet cooling application to raise the mechanical properties of the joints. The microstructure and main properties of the joints were carefully analyzed. The influence of using the new suggested welding process on the various properties of the welds is presented (UTS - ultimate tensile strength, YS - yield strength, Poisson ratio, elongation, Young’s modulus). Then, the effects of tests for use in crane bumper construction were checked by using a hybrid finite element method (FEM) analysis.
Wydawca

Czasopismo
Rocznik
Strony
97--110
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8, 40-019 Katowice, Poland, tomasz.haniszewski@polsl.pl
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8, 40-019 Katowice, Poland, tomasz.wegrzyn@polsl.pl
  • Silesian University of Technology, Faculty of Transport and Aviation Engineering, Krasińskiego 8, 40-019 Katowice, Poland, bozena.szczucka-lasota@polsl.pl
Bibliografia
  • 1. Izairi, N. & Ajredini, F. & Vevecka-Pfiftaj, A. & Makreski, P. & Ristova, M.M. Microhardness evolution in relation to the Figtalline microstructure of aluminum alloy AA3004. Archives of Metallurgy Materials. 2018. Vol. 63(3). P. 1101-1108. DOI: https://doi.org/10.24425/123782.
  • 2. Helrich, C.S. Analytical Mechanics. Springer Cham. 2017. P. 51-92.
  • 3. Chatterjee, D. & Patra, A. & Joglekar, H.K. Swing-up and stabilization of a cart-pendulum system under restricted cart track length. Systems and Control Letters. 2002. Vol. 47(4). P. 355-364.
  • 4. Haniszewski, T. Modeling the dynamics of cargo lifting process by overhead crane for dynamic overload factor estimation. J. Vibroeng. 2017. Vol. 19. No. 1. P. 75-86.
  • 5. Haniszewski, T. & Margielewicz J. & Gąska D. & Opasiak T. New crane bumper design with an energy absorption device system. Transport Problems. 2022. Vol. 17. No. 3. P. 6-16. DOI: 10.20858/tp.2022.17.3.01.
  • 6. Autodesk Inventor. Help Files. Available at: https://knowledge.autodesk.com.
  • 7. Celin, R. & Burja, J. Effect of cooling rates on the weld heat affected zone coarse grain microstructure. Metallurgical and Materials Engineering. 2018. Vol. 24(1). P. 37-44.
  • 8. Darabi, J. & Ekula, K. Development of a integrated micro cooling device. Microelectronics Journal. 2003. Vol. 34(11). P. 1067-1074.
  • 9. Hadryś, D. Impact load of welds after micro-jet cooling. Archives of Metallurgy and Materials. 2015. Vol. 60(4). P. 2525-2528.
  • 10. Wu, Q. & Wang, X. & Hua, L. & Xia, M. Dynamic analysis and time optimal anti-swing control of double pendulum bridge crane with distributed mass beams. Mech. Syst. Signal Process. 2020. Vol. 144. No. 106968. DOI: 10.1016/j.ymssp.2020.106968.
  • 11. Yakubu, G. & Olejnik, P. & Awrejcewicz, J. On the modeling and simulation of variable-length pendulum systems: a review. Arch. Comput. Methods Eng. 2022. Vol. 29. P. 2397-2415. DOI: 10.1007/S11831-021-09658-8/FIGURES/42.
  • 12. PN-EN 13001-2:2013. Bezpieczeństwo dźwignic. Ogólne zasady projektowania. Część 2: Obciążenia. Warsaw. Polish Committee of Standardization. 57 p. [In Polish: Security of cranes. General principles for design. Part 2: Loads].
  • 13. Mathew, N.J. & Rao, K.K. & Sivakumaran, N. Swing up and stabilization control of a rotary inverted pendulum. IFAC Proceedings Volumes. 2013. Vol. 10. IFAC.
  • 14. Vaughan, J. & Kim, D. & Singhose, W. Control of tower cranes with double-pendulum payload dynamics. IEEE Transactions on Control Systems Technology. 2010.
  • 15. Wu, Q. & Wang, X. & Hua, L. & Xia, M. Improved time optimal anti-swing control system based on low-pass filter for double pendulum crane system with distributed mass beam. Mech. Syst. Signal Process. 2021. Vol. 151. No. 107444.
  • 16. Zhao, Y. & Wu, X. & Li, F. & Zhang, Y. Positioning and swing elimination control of the overhead crane system with double-pendulum dynamics. J. Vib. Eng. Technol. 2023. Vol. 1. P. 1-8.
  • 17. Lee, J. & Mukherjee, R. & Khalil, H.K. Output feedback stabilization of inverted pendulum on a cart in the presence of uncertainties. Automatica. 2015. Vol. 54. P. 146-57
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fb6bcf08-99ff-4e65-a519-3ca9f7f962df
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.