Czasopismo
2022
|
Vol. 22, no. 2
|
art. no. e64, 1--17
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
The dislocation slips during the hot- and cold-rolling processes, the texture evolution and the Goss-oriented grain refinement during the annealing of the Al-Cu-Mg alloy were investigated using optical microscope (OM), scanning electron microscope (SEM), electron back-scatter diffraction (EBSD), transmission electron microscope (TEM) and X-ray diffraction (XRD). Results shown that {111} <110> octahedral slip systems and {110} <111> non-octahedral slip systems can be activated during the hot- and cold-rolling. When the dislocation slips in {111} planes are suppressed, the cross-slip from the {111} planes to the {110} planes can be activated to coordinate deformation. The strain gradients between the adjacent grains of the alloy with the large cold rolling reduction during annealing are dramatically decreased by the strain homogenization, which suppresses the growth of {110} < 001 > Goss-oriented grains. The activation of {110} <111> slip systems may be led to the decrease of the intensity of {112} <111> Copper texture, and the effect of {110} <111> slip systems on the evolution of {001} < 100 > Cube texture is very small. With the increase of the cold rolling reduction and annealing temperature, the hardness of the annealed and rolled Al-Cu-Mg alloy all increases, strain hardening and grain refinement are responsible for the enhanced hardness.
Czasopismo
Rocznik
Tom
Strony
art. no. e64, 1--17
Opis fizyczny
Bibliogr 20 poz., il., tab. wykr.
Twórcy
autor
- School of Materials Science and Engineering, Central South University, Changsha, People’s Republic of China
- Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha
autor
- School of Materials Science and Engineering, Central South University, Changsha, People’s Republic of China, liuzhiyi@csu.edu.cn
- Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha
autor
- School of Materials Science and Engineering, Central South University, Changsha, People’s Republic of China
- Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha
Bibliografia
- 1. Liu F, Liu Z, Jia P. Effect of T-phase on microstructure of the hot rolled Al-Cu-Mg alloy. J Alloy Compd. 2020;825:154190.
- 2. Duan SY, Huang LK, Yang SH, Zhou Z, Song SJ, Yang XB, Chen YZ, Li YJ, Liu G, Liu F. Uncovering the origin of enhanced strengthening in Li-added Al-Cu-Mg alloys. Mater Sci Eng, A. 2021;827:142079.
- 3. Fu J, Cui K. Effect of Mn content on the microstructure and corrosion resistance of Al-Cu-Mg-Mn alloys. J Alloy Compd 2021;896:162903.
- 4. Liu F, Liu Z, Liu M, Hu Y, Chen Y, Bai S. Texture evolution and its effect on fatigue crack propagation in two 2000 series alloys. J Mater Eng Perform 2019;28(3):1324-1336.
- 5. Hu Y, Liu Z, Zhao Q, Bai S, Liu F. P-Texture effect on the fatigue crack propagation resistance in an Al-Cu-Mg alloy bearing a small amount of silver. Materials. 2018;11(12):2481.
- 6. Contrepois Q, Maurice C, Driver JH. Hot rolling textures of Al-Cu-Li and Al-Zn-Mg-Cu aeronautical alloys: experiments and simulations to high strains. Mater Sci Eng A. 2010;527(27-28):7305-12.
- 7. Zhao Q, Liu Z, Li S, Huang T, Xia P, Lu L. Evolution of the Brass texture in an Al-Cu-Mg alloy during hot rolling. J Alloy Compd. 201715;691:786-99.
- 8. Shou WB, Yi DQ, Liu HQ, Tang C, Shen FH, Wang B. Effect of grain size on the fatigue crack growth behavior of 2524-T3 aluminum alloy. Arch Civ Mech Eng 2016;16(3):304-312.
- 9. Masuda T, Sauvage X, Hirosawa S, Horita Z. Achieving highly strengthened Al-Cu-Mg alloy by grain refinement and grain boundary segregation. Mater Sci Eng A. 2020;793:139668.
- 10. Segal VM, Reznikov VI, Dobryshevshiy AE, Kopylov VI. Plastic working of metals by simple shear. Russ Metall. 1981(1):99-105.
- 11. Cao C, Yao G, Jiang L, Sokoluk M, Wang X, Ciston J, Javadi A, Guan Z, De Rosa I, Xie W, Lavernia EJ. Bulk ultrafine grained/nanocrystalline metals via slow cooling. Sci Adv. 2019;5(8):2398.
- 12. Huang J, Feng L, Li C, Huang C, Li J, Friedrich B. Mechanism of Sc poisoning of Al-5Ti-1B grain refiner. Scripta Mater 2020;180:88-92.
- 13. Wang Y, Fang CM, Zhou L, Hashimoto T, Zhou X, Ramasse QM, Fan Z. Mechanism for Zr poisoning of Al-Ti-B based grain refiners. Acta Mater 2019;164:428-439.
- 14. Qiu D, Taylor JA, Zhang MX, Kelly PM. A mechanism for the poisoning effect of silicon on the grain refinement of Al-Si alloys. Acta Mater 2007;55(4):1447-56.
- 15. Li W, Shen Y, Liu H, Wang Y, Zhu W, Xie C. Non-octahedral-like dislocation glides in aluminum induced by athermal effect of electric pulse. J Mater Res 2016;31(9):1193-1200.
- 16. Humphreys FJ, Hatherly M. Recrystallization and related annealing phenomena 3 Elsevier Science Oxford 1995;321-357.
- 17. Yu YN. Metallurgical principle Metallurgical Industry Press Beijing 2013;800-802.
- 18. Huang T, Liu F, Liu Z, He G. Evolution of microstructure, texture, and hardness in an Al-Cu-Mg alloy during annealing. J Mater Eng Perform. 2021;31:1419-1431.
- 19. Zhao Q, Liu Z, Bai S, Li S, Hu Y, Xia P. Coincidence site lattice boundary mechanism for the preferred growth of Goss and Cube grains during annealing in an Al-Cu-Mg alloy. Mater Charact. 2018;141:193-211.
- 20. Cheng W, Liu W, Fan X, Yuan S. Cooperative enhancements in ductility and strain hardening of a solution-treated Al-Cu-Mn alloy at cryogenic temperatures. Mater Sci Eng A. 2020;790:139707.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fb6a2155-5cc3-49e6-ba12-b931abc49242