Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 53, No. 2 | 13--33
Tytuł artykułu

On nonlinear differential equations in generalized Musielak-Orlicz spaces

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider ordinary differential equations u′(t)+(I−T)u(t)=0, where an unknown function takes its values in a given modular function space being a generalization of Musielak-Orlicz spaces, and T is nonlinear mapping which is nonexpansive in the modular sense. We demonstrate that under certain natural assumptions the Cauchy problem related to this equation can be solved. We also show a process for the construction of such a solution. This result is then linked to the recent results of the fixed point theory in modular function spaces.
Wydawca

Rocznik
Strony
13--33
Opis fizyczny
Bibliogr. 68 poz.
Twórcy
  • School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia, w.m.kozlowski@unsw.edu.au
Bibliografia
  • [1] A.A.N. Abdou, and M.A. Khamsi, On the fixed points of nonexpansive maps in modular metric spaces, Preprint (2013).
  • [2] B. A. Akimovic, On uniformly convex and uniformly smooth Orlicz spaces, Teor. Funkc. Funkcional. Anal. i Prilozen. 15 (1972).
  • [3] M.K. Alaoui, On Elliptic Equations in Orlicz Spaces Involving Natural Growth Term and Measure Data, Abstract and Applied Analysis 2012:615816 (2012).
  • [4] A. Benkirane and M. Sidi El Vally, An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces, Bull. Belg. Math. Soc. Simon Stevin 20.1 (2013), 57 - 75.
  • [5] Z. Birnbaum, and W. Orlicz, Uber die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen, Studia Math. 3 (1931), 1 - 67.
  • [6] R.Bruck, T. Kuczumow, and S. Reich, Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property, Coll. Math. 65.2 (1993), 169 - 179.
  • [7] J. Cerda, H. Hudzik, and M. Mastylo, On the geometry of some Calderon-Lozanovskii interpolation spaces, Indagationes Math. 6.1 (1995), 35 - 49.
  • [8] S. Chen, Geometry of Orlicz Spaces, Dissertationes Mathematicae 356 (1996).
  • [9] V.V. Chistyakov, Modular metric spaces, I: Basic concepts, Nonlinear Analysis 72.1 (2010), 1-14.
  • [10] V.V. Chistyakov, Modular metric spaces, II: Application to superposition operators, Nonlinear Analysis 72.1 (2010), 15-30.
  • [11] A. Cianchi, Optimal Orlicz-Sobolev embeddings, Revista Mathematica Iberoamericana 20.2 (2004), 427 - 474.
  • [12] M.C. Crandall, and A. Pazy, Semigroups of nonlinear contractions and dissipative sets, J. Funct. Anal. 3 (1963), 376 - 418.
  • [13] B. A. Bin Dehaish, and W.M. Kozlowski, Fixed point iterations processes for asymptotic pointwise nonexpansive mappings in modular function spaces, Fixed Point Theory and Applications 2012:118 (2012).
  • [14] L. Diening, Theoretical and numerical results for electrorheological fluids, Ph. D. Thesis (2002), University of Freiburg, Germany.
  • [15] T. Dominguez-Benavides, M.A. Khamsi, and S. Samadi, Uniformly Lipschitzian mappings in modular function spaces, Nonlinear Analysis 46 (2001), 267-278.
  • [16] T. Dominguez-Benavides, M.A. Khamsi, and S. Samadi, Asymptotically regular mappings in modular function spaces, Scientiae Mathematicae Japonicae 53 (2001), 295-304.
  • [17] T. Dominguez-Benavides, M.A. Khamsi, and S. Samadi, Asymptotically nonexpansive mappings in modular function spaces, J. Math. Anal. Appl. 265.2 (2002), 249-263.
  • [18] J. Garcia Falset, W. Kaczor, T. Kuczumow and S. Reich, Weak convergence theorems for asymptotically nonexpansive mappings and semigroups, Nonlinear Analysis 43 (2001), 377-401.
  • [19] J. Gornicki, Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces, Comment. Math. Univ. Carolin. 30 (1989), 249 - 252.
  • [20] K. Goebel, and W.A. Kirk, A fixed points theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35.1 (1972), 171 - 174.
  • [21] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Amer. Math. Soc. 190 (1974), 163 - 205.
  • [22] J.-P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math. 74.1 (1982), 17-24.
  • [23] P. Gwiazda, P. Minakowski, and A. Wroblewska-Kaminska, Elliptic problems in generalized Orlicz-Musielak spaces, CEJM 2012.
  • [24] P. Gwiazda, P. Wittbold, A. Wroblewska, and A. Zimmermann, Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, Journal of Differential Equations 253 (2012), 635-666.
  • [25] P. Harjulehto, P. Hasto, M. Koskenoja, and S. Varonen The Dirichlet Energy Integral and Variable Exponent Sobolev Spaces with Zero Boundary Values, Potential Analysis 25.3 (2006), 205-222.
  • [26] J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford University Press, Oxford, 1993.
  • [27] N. Hussain, and M.A. Khamsi, On asymptotic pointwise contractions in metric spaces, Nonlinear Analysis 71.10 (2009), 4423 - 4429.
  • [28] W. A. Kirk, and H.K. Xu, Asymptotic pointwise contractions, Nonlinear Anal. 69 (2008), 4706 - 4712.
  • [29] W. Kaczor, T. Kuczumow and S. Reich, A mean ergodic theorem for nonlinear semigroups which are asymptotically nonexpansive in the intermediate sense, J. Math. Anal. Appl. 246 (2000), 1 - 27.
  • [30] W. Kaczor, T. Kuczumow and S. Reich, A mean ergodic theorem for mappings which are asymptotically nonexpansive in the intermediate sense, Nonlinear Analysis 47 (2001), 2731-2742.
  • [31] A. Kaminska, On uniform convexity of Orlicz spaces, Indag. Math. 44.1 (1982), 27-36.
  • [32] M.A. Khamsi, Nonlinear semigroups in modular function spaces, Math. Japonica 37.2 (1992), 1-9.
  • [33] M.A. Khamsi, Fixed point theory in modular function spaces, Proceedings of the Workshop on Recent Advances on Metric Fixed Point Theory held in Sevilla, September, 1995, 31-35. MR1440218(97m:46044).
  • [34] M.A. Khamsi, A convexity property in modular function spaces, Math. Japonica 44.2 (1996), 269-279.
  • [35] M.A. Khamsi, and W.M. Kozlowski, On asymptotic pointwise contractions in modular function spaces, Nonlinear Analysis 73 (2010), 2957 - 2967.
  • [36] M.A. Khamsi, and W.M. Kozlowski, On asymptotic pointwise nonexpansive mappings in modular function spaces, J. Math. Anal. Appl. 380.2 (2011), 697 - 708.
  • [37] M.A. Khamsi, W.M. Kozlowski, and S. Reich, Fixed point theory in modular function spaces, Nonlinear Analysis 14 (1990), 935-953.
  • [38] M.A. Khamsi, W.M. Kozlowski, and S. Chen, Some geometrical properties and fixed point theorems in Orlicz spaces, J. Math. Anal. Appl. 155.2 (1991), 393-412.
  • [39] W.A. Kirk, Asymptotic pointwise contractions, in: Plenary Lecture, the 8th International Conference on Fixed Point Theory and Its Applications, Chiang Mai University, Thailand, July 16-22, 2007.
  • [40] W.M. Kozlowski, Notes on modular function spaces I, Comment. Math. 28 (1988), 91-104.
  • [41] W.M. Kozlowski, Notes on modular function spaces II, Comment. Math. 28 (1988), 105-120.
  • [42] W.M. Kozlowski, Modular Function Spaces, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol.122, Dekker, New York/Basel, 1988.
  • [43] W.M. Kozlowski, Fixed point iteration processes for asymptotic pointwise nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 377.1 (2011), 43 - 52.
  • [44] W.M. Kozlowski, Common fixed points for semigroups of pointwise Lipschitzian mappings in Banach spaces, Bull. Austral. Math Soc. 84 (2011), 353 - 361.
  • [45] W.M. Kozlowski, On the existence of common fixed points for semigroups of nonlinear mappings in modular function spaces, Comment. Math. 51.1 (2011), 81 - 98.
  • [46] W.M. Kozlowski, Advancements in fixed point theory in modular function, Arab J. Math. (2012), doi:10.1007/s40065-012-0051-0.
  • [47] W.M. Kozlowski, On the construction of common fixed points for semigroups of nonlinear mappings in uniformly convex and uniformly smooth Banach spaces, Comment. Math. 52.2 (2012), 113 - 136.
  • [48] W.M. Kozlowski, Pointwise Lipschitzian mappings in uniformly convex and uniformly smooth Banach spaces, Nonlinear Analysis 84 (2013), 50 - 60.
  • [49] W.M. Kozlowski On common fixed points of semigroups of mappings nonexpansive with respect to convex function modulars, J. Nonlinear Convex Anal., in press.
  • [50] W.M. Kozlowski, and B. Sims, On the convergence of iteration processes for semigroups of nonlinear mappings in Banach spaces, In: Computational and Analytical Mathematics, In Honor of Jonathan Borwein’s 60th Birthday, Editors: D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan, M. Thera, J.D. Vanderwerff, H. Wolkowicz, Springer Proceedings in Mathematics & Statistics, Vol. 50, New York Heidelberg Dordrecht London, 2013.
  • [51] W.M. Kozlowski, An Introduction to Fixed Point Theory in Modular Function Spaces, In "Topics in Fixed Point Theory", Ed: S. Almezel, Q.H. Ansari, M.A. Khamsi, Springer Verlag, New York Heidelberg Dordrecht London, 2014.
  • [52] M.A. Krasnosel’skii, and Y.B. Rutickii, Convex Functions and Orlicz Spaces. P. Nordhoff Ltd, Groningen, 1961.
  • [53] W.A.J. Luxemburg, Banach Function Spaces. Thesis, Delft, (1955).
  • [54] H.W. Milnes, Convexity of Orlicz spaces. Pacific J. Math. 7 (1957), 1451-1486.
  • [55] J. Musielak, Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1983.
  • [56] J. Musielak, and W. Orlicz, On modular spaces. Studia Math. 18 (1959), 49 - 65.
  • [57] J. Musielak, and W. Orlicz, Some remarks on modular spaces. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 7 (1959), 661 - 668.
  • [58] Nakano, H.: Modulared Semi-ordered Linear Spaces. Maruzen Co., Tokyo, 1950.
  • [59] W. Orlicz, Uber eine gewisee klasse von Raumen vom Typus B, Bull. Acad. Polon. Sci. Ser. A, (1932), 207 - 220.
  • [60] W. Orlicz, Uber Raumen LM, Bull. Acad. Polon. Sci. Ser. A, (1936), 93 - 107.
  • [61] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274 - 276.
  • [62] S. Reich, A note on the mean ergodic theorem for nonlinear semigroups, J. Math. Anal. Appl. 91 (1983), 547 - 551.
  • [63] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics 1748 (2000), Springer Verlag, Berlin.
  • [64] G. Talenti, Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces, Annali di Matematica Pura ed Applicata 120 (1979), 159 - 184.
  • [65] K-K.Tan, and H-K. Xu, An ergodic theorem for nonlinear semigroups of Lipschitzian mappings in Banach spaces, Nonlinear Anal. 19.9 (1992), 805 - 813.
  • [66] K-K.Tan, and H-K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301 - 308.
  • [67] K-K.Tan, and H-K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 733 - 739.
  • [68] H-K. Xu, Existence and convergence for fixed points of asymptotically nonexpansive type, Nonlinear Anal. 16 (1991), 1139 - 1146.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fb5705d2-00e4-4468-af08-26be3dcf688e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.