Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 20, no. 4 | 578--588
Tytuł artykułu

Physical simulation and dilatometric study of double-step heat treatment of medium-Mn steel

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work addresses physical simulation and dilatometric study of one-step and double-step heat treatments of medium-Mn steel designed for automotive sheets. The conventional one-step isothermal bainitic transformation was applied as the reference heat treatment. The newly implemented heat treatment consisted of isothermal holding in a bainitic region followed by additional holding of the material at reduced temperature also in the bainitic range. This step was added to refine the microstructure, which led to the stabilization of the retained austenite. Calculations of equilibrium state and non-equilibrium cooling and simulations of the developed thermal cycles were performed using the thermodynamic JMatPro software. The physical simulations of the heat treatment were performed in the dilatometer. The obtained samples were subjected to microscopic observations using light and SEM microscopy. One- and two-step heat treatments allowed to obtain bainitic structures with high contents of retained austenite. Lowering the temperature of one-step isothermal holding resulted in the bainite refinement and adjacent retained austenite. The increased Mn content in steel increased its susceptibility to form coalesced bainite resulting in the partial formation of thicker plates despite a decrease in a process temperature.
Wydawca

Rocznik
Strony
578--588
Opis fizyczny
Bibliogr. 49 poz., rys., wykr.
Twórcy
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarkiego 18a St., 44-100 Gliwice, Poland, adam.skowronek@polsl.pl
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarkiego 18a St., 44-100 Gliwice, Poland
  • National Center for Metallurgical Research, Av. de Gregorio del Amo 8, 28040 Madrid, Spain
  • National Center for Metallurgical Research, Av. de Gregorio del Amo 8, 28040 Madrid, Spain
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarkiego 18a St., 44-100 Gliwice, Poland
Bibliografia
  • [1] Speer J, Rana R, Matlock D, Glover A, Thomas G, De Moor E. Processing variants in medium-Mn steels. Metals. 2019;9:771.
  • [2] Lee Y-K, Han J. Current opinion in medium manganese steel. J Mater Sci Technol. 2015;31:843–56.
  • [3] Morawiec M, Grajcar A, Zalecki W, Garcia-Mateo C, Opiela M. Dilatometric study of phase transformations in 5 Mn steel subjected to different heat treatments. Materials. 2020;13:958.
  • [4] Soleimani M, Kalhor A, Mirzadeh H. Transformation-induced plasticity (TRIP) in advanced steels: a review. Mater Sci Eng A. 2020;795:140023.
  • [5] Chiang J, Lawrence B, Boyd JD, Pilkey AK. Effect of microstructure on retained austenite stability and work hardening of TRIP steels. Mater Sci Eng A. 2011;528:4516–21.
  • [6] Schneider R, Steineder K, Krizan D, Sommitsch C. Effect of the heat treatment on the microstructure and mechanical properties of medium-Mn-steels. J Mater Sci Technol. 2019;35:2045–53.
  • [7] Hu B, Luo H. Microstructures and mechanical properties of 7Mn steel manufactured by different rolling processes. Metals. 2017;7:464.
  • [8] Grajcar A, Skrzypczyk P, Woźniak D. Thermomechanically rolled medium-Mn steels containing retained austenite. Arch Metall Mater. 2014;59:1691–7.
  • [9] Lee S-J, Lee S, De Cooman BC. Mn partitioning during the intercritical annealing of ultrafine-grained 6% Mn transformation-induced plasticity steel. Scr Mater. 2011;64:649–52.
  • [10] De Moor E, Matlock DK, Speer JG, Merwin MJ. Austenite stabilization through manganese enrichment. Scr Mater. 2011;64:185–8.
  • [11] Gibbs PJ, De Moor E, Merwin MJ, Clausen B, Speer JG, Matlock DK. Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel. Metall Mater Trans A. 2011;42:3691–702.
  • [12] Grajcar A, Zalecki W, Burian W, Kozłowska A. Phase equilibrium and austenite decomposition in advanced high-strength medium-Mn bainitic steels. Metals. 2016;6:248.
  • [13] Grajcar A, Kwaśny W, Zalecki W. Microstructure–property relationships in TRIP aided medium-C bainitic steel with lamellar retained austenite. Mater Sci Technol. 2015;31:781–94.
  • [14] Caballero FG, Bhadeshia HKDH, Mawella KJA, Jones DG, Brown P. Very strong low temperature bainite. J Mater Sci Tech-nol. 2002;18:279–84.
  • [15] Garcia-Mateo C, Caballero FG, Bhadeshia HKDH. Low temperature bainite. J Phys IV France. 2003;112:285–8.
  • [16] Yoozbashi MN, Yazdani S, Wang TS. Design of a new nanostructured, high-Si bainitic steel with lower cost production. Mater Des. 2011;32:3248–53.
  • [17] Caballero FG, GarcíA-Mateo C, Chao J, Santofimia MJ, Capdevila C, de Andrés CG. Effects of morphology and stability of retained austenite on the ductility of TRIP-aided bainitic steels. ISIJ Int. 2008;48:1256–62.
  • [18] Garcia-Mateo C, Caballero FG, Chao J, Capdevila C, de Andres CG. Mechanical stability of retained austenite during plastic deformation of super high strength carbide free bainitic steels. J Mater Sci. 2009;44:4617–24.
  • [19] Singh SB, Bhadeshia HKDH. Estimation of bainite plate-thickness in low-alloy steels. Mater Sci Eng A. 1998;245:72–9.
  • [20] García-Mateo C, Caballero FG, Bhadeshia HKDH. Mechanical properties of low-temperature bainite. Mater Sci Forum. 2005;500–501:495–502.
  • [21] Bhadeshia HKDH. Bulk nanocrystalline steel. Ironmak Steelmak. 2005;32:405–10.
  • [22] Shen YF, Qiu LN, Sun X, Zuo L, Liaw PK, Raabe D. Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels. Mater Sci Eng A. 2015;636:551–64.
  • [23] Shen YF, Liu YD, Sun X, Wang YD, Zuo L, Misra RDK. Improved ductility of a transformation-induced-plasticity steel by nanoscale austenite lamellae. Mater Sci Eng A. 2013;583:1–10.
  • [24] Long XY, Zhang FC, Kang J, Lv B, Shi XB. Low-temperature bainite in low-carbon steel. Mater Sci Eng A. 2014;594:344–51.
  • [25] Long XY, Kang J, Lv B, Zhang FC. Carbide-free bainite in medium carbon steel. Mater Des. 2014;64:237–45.
  • [26] Avishan B, Tavakolian M, Yazdani S. Two-step austempering of high performance steel with nanoscale microstructure. Mater Sci Eng A. 2017;693:178–85.
  • [27] Soliman M, Mostafa H, El-Sabbagh AS, Palkowski H. Low temperature bainite in steel with 0.26wt% C. Mater Sci Eng A. 2010;527:7706–13.
  • [28] Wang XL, Wu KM, Hu F, Yu L, Wan XL. Multi-step isothermal bainitic transformation in medium-carbon steel. Scr Mater. 2014;74:56–9.
  • [29] Mousalou H, Yazdani S, Avishan B, Ahmadi NP, Chabok A, Pei Y. Microstructural and mechanical properties of low-carbon ultra-fine bainitic steel produced by multi-step austempering process. Mater Sci Eng A. 2018;734:329–37.
  • [30] Duong VT, Song YY, Park K-S, Bhadeshia HKDH, Suh D-W. Austenite in transformation-induced plasticity steel subjected to multiple isothermal heat treatments. Metall Mater Trans A. 2014;45:4201–9.
  • [31] Sugimoto K, Sakaguchi J, Iida T, Kashima T. Stretch-flangea-bility of a high-strength TRIP type bainitic sheet steel. ISIJ Int. 2000;40:920–6.
  • [32] Kim K-W, Il Kim K, Lee C-H, Kang J-Y, Lee T-H, Cho K-M, et al. Control of retained austenite morphology through double bainitic transformation. Mater Sci Eng A. 2016;673:557–61.
  • [33] Mukherjee M, Mohanty ON, Hashimoto S, Hojo T, Sugimoto K. Strain-induced transformation behaviour of retained austenite and tensile properties of TRIP-aided steels with different matrix microstructure. ISIJ Int. 2006;46:316–24.
  • [34] Sugimoto K, Nakano K, Song S-M, Kashima T. Retained austenite characteristics and stretch-flangeability of high-strength low-alloy TRIP type bainitic sheet steels. ISIJ Int. 2002;42:450–5.
  • [35] Grajcar A, Kalinowska-Ozgowicz E, Opiela M, Grzegorczyk B, Gołombek K. Effects of Mn and Nb on the macro- and microseg-regation in high-Mn high-Al content TRIP steels. Arch Civ Mech Eng. 2011;49:10.
  • [36] Sente Software Ltd. A collection of free downloadable papers on the development and application of JmatPro. 2005. https ://www.sente softw are.co.uk/bibli o.html. Accessed 25 Mar 2020.
  • [37] ASTM A1033–04. Standard practice for quantitative measurement and reporting of hypoeutectoid carbon and low-alloy steel phase transformations; ASTM International: West Conshohocken. 2004. https ://www.astm.org/. Accessed 25 Mar 2020.
  • [38] Navarro-López A, Sietsma J, Santofimia MJ. Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a low-C high-Si steel. Metall Mater Trans A. 2016;47:1028–39.
  • [39] Guo H, Feng X, Zhao A, Li Q, Ma J. Influence of prior martensite on bainite transformation, microstructures, and mechanical properties in ultra-fine bainitic steel. Materials. 2019;12:527.
  • [40] Caballero FG, Chao J, Cornide J, García-Mateo C, Santofimia MJ, Capdevila C. Toughness of advanced high strength bainitic steels. Mater Sci Forum. 2010;638–642:118–23.
  • [41] Sourmail T, Smanio V. Determination of Ms temperature: Methods, meaning and influence of “slow start” phenomenon. Mater Sci Technol. 2013;29(7):883–8.
  • [42] Kuziak R, Kawalla R, Waengler S. Advanced high strength steels for automotive industry. Arch Civ Mech Eng. 2008;8:103–17.
  • [43] Han DT, Xu YB, Zou Y, Hu ZP, Chen SQ, Yu YM. Effect of Al on the microstructure and mechanical properties of hot-rolled medium-Mn steel. Mater Sci Forum. 2018;941:292–8.
  • [44] Grajcar A, Kamińska M, Opiela M, Skrzypczyk P, Grzegorczyk B, Kalinowska-Ozgowicz E. Segregation of alloying elements in thermomechanically rolled medium-Mn multiphase steels. J Achiev Mater Manuf Eng. 2012;55:256–64.
  • [45] Chu C, Qin Y, Li X, Yang Z, Zhang F, Guo C, et al. Effect of two-step austempering process on transformation kinetics of nanostructured bainitic steel. Materials. 2019;12:166.
  • [46] Sarizam M, Komizo Y. Effects of holding temperature on bainite transformation in Cr-Mo steel. J Mech Eng Sci. 2014;7:1103–14.
  • [47] Bhadeshia HKDH, Edmonds DV. The bainite transformation in a silicon steel. Metall Trans A. 1979;10:895–907.
  • [48] Chang LC, Bhadeshia HKDH. Microstructure of lower bainite formed at large undercoolings below bainite start temperature. Mater Sci Technol. 1996;12:233–6.
  • [49] Bhadeshia HKDH, Keehan E, Karlsson L, Andren HO. Coalesced Bainite. Trans Indian Inst Metals. 2006;59:689–94.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-fb1fd62f-bb86-48ca-8746-6840e6ddce44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.